login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A068394 Numbers n such that the n-th digit of Pi and the n-th digit of e are the same. 5
12, 16, 17, 20, 33, 39, 44, 55, 58, 69, 80, 94, 99, 142, 169, 205, 243, 262, 274, 278, 293, 323, 325, 330, 333, 360, 364, 387, 388, 395, 411, 419, 427, 428, 452, 459, 460, 461, 483, 493, 499, 500, 503, 506, 511, 522, 525, 547, 581, 590, 594, 595, 598, 602 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Carmine Suriano, Table of n, a(n) for n = 1..290

FORMULA

a(n) = A052055(n) - 1.

EXAMPLE

Let dPi(n) be the n-th digit of Pi=3.14159... (e.g., dPi(2)=4) and de(n) be the n-th digit of e=2.718... (e.g., de(2)=1); then dPi(12) = de(12) = 9, hence 12 is in the sequence.

MAPLE

P:=proc(i) local a, b, c, x, y, n; a:=evalf(Pi-3, 1000); b:=evalf(exp(1)-2, 1000); c:=1; for n from 0 by 1 to i do x:=trunc(a*10); y:=trunc(b*10); a:=evalf(frac(a*10), 1000); b:=evalf(frac(b*10), 1000); if x=y then print(c); fi; c:=c+1; od; end: P(900); # Paolo P. Lava, Oct 22 2008

PROG

(MAGMA) m:=610; p:=Pi(RealField(m+1)); sp:=IntegerToString(Round(10^m*(p-3))); e:=Exp(One(RealField(m+1))); se:=IntegerToString(Round(10^m*(e-2))); [ a: a in [1..m] | sp[a] eq se[a] ]; // Klaus Brockhaus, Sep 04 2009

CROSSREFS

Cf. A052055.

Sequence in context: A175784 A143090 A328074 * A189685 A126763 A058080

Adjacent sequences:  A068391 A068392 A068393 * A068395 A068396 A068397

KEYWORD

easy,nonn,base

AUTHOR

Benoit Cloitre, Mar 08 2002

EXTENSIONS

Listed terms verified by Klaus Brockhaus, Sep 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 4 05:02 EDT 2021. Contains 346442 sequences. (Running on oeis4.)