

A068394


Numbers n such that the nth digit of Pi and the nth digit of e are the same.


5



12, 16, 17, 20, 33, 39, 44, 55, 58, 69, 80, 94, 99, 142, 169, 205, 243, 262, 274, 278, 293, 323, 325, 330, 333, 360, 364, 387, 388, 395, 411, 419, 427, 428, 452, 459, 460, 461, 483, 493, 499, 500, 503, 506, 511, 522, 525, 547, 581, 590, 594, 595, 598, 602
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Carmine Suriano, Table of n, a(n) for n = 1..290


FORMULA

a(n) = A052055(n)  1.


EXAMPLE

Let dPi(n) be the nth digit of Pi=3.14159... (e.g., dPi(2)=4) and de(n) be the nth digit of e=2.718... (e.g., de(2)=1); then dPi(12) = de(12) = 9, hence 12 is in the sequence.


MAPLE

P:=proc(i) local a, b, c, x, y, n; a:=evalf(Pi3, 1000); b:=evalf(exp(1)2, 1000); c:=1; for n from 0 by 1 to i do x:=trunc(a*10); y:=trunc(b*10); a:=evalf(frac(a*10), 1000); b:=evalf(frac(b*10), 1000); if x=y then print(c); fi; c:=c+1; od; end: P(900); # Paolo P. Lava, Oct 22 2008


PROG

(MAGMA) m:=610; p:=Pi(RealField(m+1)); sp:=IntegerToString(Round(10^m*(p3))); e:=Exp(One(RealField(m+1))); se:=IntegerToString(Round(10^m*(e2))); [ a: a in [1..m]  sp[a] eq se[a] ]; // Klaus Brockhaus, Sep 04 2009


CROSSREFS

Cf. A052055.
Sequence in context: A175784 A143090 A328074 * A189685 A126763 A058080
Adjacent sequences: A068391 A068392 A068393 * A068395 A068396 A068397


KEYWORD

easy,nonn,base


AUTHOR

Benoit Cloitre, Mar 08 2002


EXTENSIONS

Listed terms verified by Klaus Brockhaus, Sep 04 2009


STATUS

approved



