login
A068380
Engel expansion of sinh(1/3).
2
3, 54, 180, 378, 648, 990, 1404, 1890, 2448, 3078, 3780, 4554, 5400, 6318, 7308, 8370, 9504, 10710, 11988, 13338, 14760, 16254, 17820, 19458, 21168, 22950, 24804, 26730, 28728, 30798, 32940, 35154, 37440, 39798, 42228, 44730, 47304, 49950
OFFSET
1,1
COMMENTS
Cf. A006784 for the definition of the Engel expansion.
The MathWorld link mentions the closed form of the Engel expansion of sinh(1). - Georg Fischer, Nov 22 2020
LINKS
FORMULA
a(1) = 3, a(n) = 18*(n*(2*n-3)+1) for n>1. - Ralf Stephan, Sep 03 2003
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>4. G.f.: 3*x*(x^3-9*x^2-15*x-1)/(x-1)^3. - Colin Barker, Apr 13 2012
EXAMPLE
1/3 + 1/(3*54) + 1/(3*54*180) + 1/(3*54*180*378) + 1/(3*54*180*378*648) ...
= 0.3395405572560086...
sinh(1/3) = 0.33954055725615013910126061...
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {3, 54, 180, 378}, 50]
PROG
(PARI) a(n)=if(n<=1, 3, 18*(n*(2*n-3)+1))
CROSSREFS
Sequence in context: A344424 A045481 A275566 * A174782 A345074 A119294
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Mar 03 2002
EXTENSIONS
Edited, offset 1 and a(1)=3 by Georg Fischer, Nov 23 2020
STATUS
approved