login
A068353
Decimal expansion of smallest positive root of cos(Pi x/2) cosh(Pi x/2) = -1.
0
1, 1, 9, 3, 7, 2, 8, 3, 2, 5, 3, 8, 8, 9, 3, 4, 3, 2, 3, 4, 3, 8, 8, 0, 9, 2, 3, 4, 7, 6, 0, 3, 2, 9, 0, 1, 6, 9, 9, 4, 3, 0, 3, 3, 9, 9, 3, 6, 5, 8, 9, 7, 9, 6, 0, 8, 1, 6, 4, 9, 7, 2, 5, 6, 3, 4, 8, 2, 6, 2, 2, 3, 5, 4, 7, 5, 7, 2, 2, 6, 8, 1, 3, 7, 2, 0, 5, 3, 0, 7, 1, 0, 9, 1, 5, 1, 4, 4, 2, 0, 9, 8, 8, 7, 2
OFFSET
1,3
COMMENTS
The root is x = 1.1937283253889343234388...
REFERENCES
Harrington, E. A. (1928). The vibrations of tuning-forks. JOSA, 17, 224-237.
Keulegan, G. H. (1928). On the vibration of U bars (Doctoral dissertation, Johns Hopkins University).
Liebetrau, A. M. (1979). Some tests of randomness based upon the variance-time curve of the Poisson process. Journal of the Royal Statistical Society. Series B (Methodological), 41, 32-39.
MATHEMATICA
RealDigits[FindRoot[Cos[Pi x/2]Cosh[Pi x/2]==-1, {x, 1}, WorkingPrecision->200][[1, 2]]][[1]]
PROG
(PARI) solve(x=1, 2, cos(x)*cosh(x)+1)*2/Pi \\ Charles R Greathouse IV, Apr 16 2014
CROSSREFS
Equals (2/Pi) times A076417.
Sequence in context: A011390 A011229 A324993 * A346989 A136251 A073002
KEYWORD
nonn,cons
AUTHOR
Joost de Winter, Feb 28 2002
EXTENSIONS
Edited by Dean Hickerson, Jun 07 2002
Offset corrected by R. J. Mathar, Feb 05 2009
STATUS
approved