OFFSET
1,2
COMMENTS
a(n) = 0 if and only if n has a prime factor > 7. If n > 1 has no prime factor > 7, let n^n = 2^a*3^b*5^c*7^d. Let m(x) denote the number of digit x in a(n). Then a(n) is a number whose digits are nondecreasing and defined as follows. m(2) = 1 if a mod 3 == 1 and 0 otherwise, m(3) = 1 if b mod 2 == 1 and 0 otherwise, m(4) = 1 if a mod 3 == 2 and 0 otherwise, m(5) = c, m(6) = 0, m(7) = d, m(8) = floor(a/3), m(9) = floor(b/2). - Chai Wah Wu, Aug 12 2017
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..200
PROG
(Python)
from sympy import factorint
def A068187(n):
if n == 1:
return 1
pf = factorint(n)
return 0 if max(pf) > 7 else int(''.join(sorted(''.join(str(a)*(n*b) for a, b in pf.items()).replace('222', '8').replace('22', '4').replace('33', '9')))) # Chai Wah Wu, Aug 13 2017
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Labos Elemer, Feb 18 2002
EXTENSIONS
Edited by Dean Hickerson and Henry Bottomley, Mar 07 2002
STATUS
approved