login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068149
Triangular numbers in which neighboring digits differ at most by 1. Allowed neighbors of 9 are 0, 8 and 9.
2
0, 1, 3, 6, 10, 21, 45, 55, 66, 78, 210, 666, 990, 2211, 3321, 5565, 6555, 8778, 10011, 90100, 112101, 222111, 232221, 443211, 887778, 5433456, 5456556, 5656566, 5676765, 22221111, 22321221, 34565455, 88877778, 211099878, 212210901
OFFSET
1,3
COMMENTS
Includes (2 * 10^(2*k) - 10^k - 1)/9 and (8 * 10^(2*k) - 10^(k+1) + 2)/9 for k >= 1, and (2 * 10^(2*k) + 89 * 10^k + 989)/9 for k >= 2. - Robert Israel, Sep 22 2024
LINKS
Robert Israel, Table of n, a(n) for n = 1..95 (n = 1 .. 65 from Andrew Howroyd)
MAPLE
f:= proc(n) local i;
seq(10*n+i, i= sort([n-1, n, n+1] mod 10))
end proc:
istri:= proc(n) issqr(1+8*n) end proc:
S:= [$1..9]: R:= 0, 1, 3, 6: count:= 4:
for i from 1 while count < 95 do
for k from i to i+1 do
for s in S do
tmin:= ceil(sqrt(8*s*10^k+1));
if tmin::even then tmin:= tmin+1 fi;
for t from tmin to floor(sqrt(8*(s+1)*10^k-7)) by 2 do
x:= (t-1)/2; y:= x*(x+1)/2;
L:= convert(y, base, 10);
if convert(L[2..-1]-L[1..-2] mod 10, set) subset {0, 1, 9} then
R:= R, y; count:= count+1;
fi od od od;
if count < 95 then S:= map(f, S) fi;
od:
R; # Robert Israel, Sep 23 2024
MATHEMATICA
Do[a = IntegerDigits[n(n + 1)/2]; k = 1; l = Length[a]; While[k < l && (Abs[a[[k]]- a[[k + 1]]] < 2 || Abs[a[[k]] - a[[k + 1]]] > 8), k++ ]; If[k == l, Print[n(n + 1)/2]], {n, 0, 10^5} ]
Select[Accumulate[Range[0, 30000]], Max[Select[Abs[Differences[ IntegerDigits[ #]]], #!=9&]]<2&] (* Harvey P. Dale, Oct 09 2013 *)
CROSSREFS
Intersection of A000217 and A376425.
Sequence in context: A027671 A167617 A274018 * A068709 A068804 A117834
KEYWORD
base,easy,nonn
AUTHOR
Amarnath Murthy, Feb 23 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v and Sascha Kurz, Mar 01 2002
Offset changed by Andrew Howroyd, Sep 22 2024
STATUS
approved