login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067904
Primes of the form floor((3/2)^k).
5
2, 3, 5, 7, 11, 17, 4987, 7481, 180693856682317883, 4630985912862061063, 75677449184722757264165738713, 1910944005427272291238064043761449, 366425537175409658704814112327931286021
OFFSET
1,1
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, E19.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..23
MATHEMATICA
f[n_]:=Floor[(3/2)^n]; lst={}; Do[p=f[n]; If[PrimeQ[p], AppendTo[lst, p]], {n, 0, 4*5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 02 2009 *)
Select[Floor[(3/2)^Range[300]], PrimeQ] (* Harvey P. Dale, Dec 28 2014 *)
PROG
(PARI) v=[]; for(k=2, 5700, if(ispseudoprime(t=floor((3/2)^k)), v=concat(v, t))); v \\ Charles R Greathouse IV, Feb 15 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Mar 03 2002
STATUS
approved