The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066740 Number of distinct partitions of A007504(n) which can be obtained by merging parts in the partition 2+3+5+...+prime(n), where prime(n) is the n-th prime. 1
 1, 1, 2, 5, 13, 44, 151, 614, 2446, 11066, 53368, 253927, 1316375, 7213979, 38175696, 213766427 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..15. EXAMPLE For n=4, the 13 partitions are 17, 2+15, 3+14, 5+12, 7+10, 8+9, 2+3+12, 2+5+10, 2+7+8, 3+5+9, 3+7+7, 5+5+7, 2+3+5+7. 5+12 and 7+10 can be obtained in two ways each: 5+12 = (5)+(2+3+7) = (2+3)+(5+7), 7+10 = (7)+(2+3+5) = (2+5)+(3+7). MAPLE b:= proc(n) local p; p:= `if`(n=0, 1, ithprime(n)); b(n):= `if`(n<2, {[p\$n]}, map(x-> [sort([x[], p]), seq(sort(subsop(i=x[i]+p, x)), i=1..nops(x))][], b(n-1))) end: a:= n-> nops(b(n)): seq(a(n), n=0..10); # Alois P. Heinz, May 31 2013 MATHEMATICA addto[ p_, k_ ] := Module[ {}, lth=Length[ p ]; Union[ Sort/@Append[ Table[ Join[ Take[ p, i-1 ], {p[ [ i ] ]+k}, Take[ p, i-lth ] ], {i, 1, lth} ], Append[ p, k ] ] ] ]; addtolist[ plist_, k_ ] := Union[ Join@@(addto[ #, k ]&/@plist) ]; l[ 0 ]={{}}; l[ n_ ] := l[ n ]=addtolist[ l[ n-1 ], Prime[ n ] ]; a[ n_ ] := Length[ l[ n ] ] CROSSREFS Cf. A007504, A066723. Sequence in context: A287023 A287008 A119533 * A212825 A212826 A212827 Adjacent sequences: A066737 A066738 A066739 * A066741 A066742 A066743 KEYWORD more,nonn AUTHOR Naohiro Nomoto, Jan 16 2002 EXTENSIONS Edited by Dean Hickerson, Jan 18 2002 a(14)-a(15) from Sean A. Irvine, Nov 05 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 06:29 EDT 2024. Contains 374935 sequences. (Running on oeis4.)