OFFSET
0,3
EXAMPLE
For n=4, the 13 partitions are 17, 2+15, 3+14, 5+12, 7+10, 8+9, 2+3+12, 2+5+10, 2+7+8, 3+5+9, 3+7+7, 5+5+7, 2+3+5+7. 5+12 and 7+10 can be obtained in two ways each: 5+12 = (5)+(2+3+7) = (2+3)+(5+7), 7+10 = (7)+(2+3+5) = (2+5)+(3+7).
MAPLE
b:= proc(n) local p; p:= `if`(n=0, 1, ithprime(n));
b(n):= `if`(n<2, {[p$n]}, map(x-> [sort([x[], p]),
seq(sort(subsop(i=x[i]+p, x)), i=1..nops(x))][], b(n-1)))
end:
a:= n-> nops(b(n)):
seq(a(n), n=0..10); # Alois P. Heinz, May 31 2013
MATHEMATICA
addto[ p_, k_ ] := Module[ {}, lth=Length[ p ]; Union[ Sort/@Append[ Table[ Join[ Take[ p, i-1 ], {p[ [ i ] ]+k}, Take[ p, i-lth ] ], {i, 1, lth} ], Append[ p, k ] ] ] ]; addtolist[ plist_, k_ ] := Union[ Join@@(addto[ #, k ]&/@plist) ]; l[ 0 ]={{}}; l[ n_ ] := l[ n ]=addtolist[ l[ n-1 ], Prime[ n ] ]; a[ n_ ] := Length[ l[ n ] ]
CROSSREFS
KEYWORD
more,nonn
AUTHOR
Naohiro Nomoto, Jan 16 2002
EXTENSIONS
Edited by Dean Hickerson, Jan 18 2002
a(14)-a(15) from Sean A. Irvine, Nov 05 2023
STATUS
approved