login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of rational numbers produced in order by A066720(j)/A066720(i) for i >= 1, 1 <= j <i.
8

%I #12 Aug 23 2022 13:08:24

%S 1,1,1,2,1,2,3,1,2,3,5,1,1,3,5,7,1,2,3,5,7,8,1,2,3,5,7,8,11,1,2,3,5,7,

%T 8,11,13,1,1,1,5,7,4,11,13,17,1,2,3,5,7,8,11,13,17,18,1,2,3,5,7,8,11,

%U 13,17,18,19,1,2,3,5,7,8,11,13,17,18,19,23,1,2,3,5,7

%N Numerators of rational numbers produced in order by A066720(j)/A066720(i) for i >= 1, 1 <= j <i.

%C Does every rational number in range (0,1) appear?

%C a(0) = 1 by convention.

%H Reinhard Zumkeller, <a href="/A066657/b066657.txt">Table of n, a(n) for n = 0..10000</a>

%e Sequence of rationals begins 1, 1/2, 1/3, 2/3, 1/5, 2/5, 3/5, 1/7, 2/7, 3/7, 5/7, 1/8, 1/4, 3/8, 5/8, 7/8, 1/11, 2/11, ...

%t nmax = 14;

%t b[1] = 1; F = {1};

%t For[n = 2, n <= nmax, n++,

%t For[k = b[n-1]+1, True, k++, Fk = Join[{k^2}, Table[b[i]*k, {i, 1, n-1}]] // Union; If[Fk~Intersection~F == {}, b[n] = k; F = F~Union~Fk; Break[]]]];

%t Join[{1}, Table[b[k]/b[n], {n, 1, nmax}, {k, 1, n-1}]] // Flatten // Numerator (* _Jean-François Alcover_, Aug 23 2022, after _Robert Israel in A066720 *)

%o (Haskell)

%o import Data.List (inits)

%o import Data.Ratio ((%), numerator)

%o a066657 n = a066657_list !! n

%o a066657_list = map numerator

%o (1 : (concat $ tail $ zipWith (\u vs -> map (% u) vs)

%o a066720_list (inits a066720_list)))

%o -- _Reinhard Zumkeller_, Nov 19 2013

%Y Cf. A066658 (denominators), A066720.

%K nonn,frac,nice

%O 0,4

%A _N. J. A. Sloane_, Jan 18 2002