login
A066600
Sum of the digits in the n-th row of Pascal's triangle.
2
1, 2, 4, 8, 16, 14, 28, 38, 67, 80, 43, 86, 127, 164, 94, 152, 178, 248, 298, 362, 337, 332, 385, 446, 451, 398, 499, 602, 574, 698, 703, 794, 805, 854, 1015, 1040, 1135, 1226, 1201, 1286, 1330, 1400, 1531, 1640, 1687, 1754, 1861, 2102, 2161, 2450, 2074
OFFSET
0,2
LINKS
EXAMPLE
The 7th row in Pascal's triangle is 1, 7, 21, 35, 35, 21, 7, 1 and the sum of the digits is 38 hence a(7) = 38.
MATHEMATICA
f[n_] := Block[{m = s = 0}, While[m < n + 1, s = s + Apply[ Plus, IntegerDigits[ Binomial[n, m]]]; m++ ]; Return[s]]; Table[ f[n], {n, 0, 50}]
PROG
(PARI) a(n)={vecsum([sumdigits(x) | x<-binomial(n)])} \\ Harry J. Smith, Mar 08 2010
CROSSREFS
Sequence in context: A358708 A108565 A066005 * A210025 A309571 A210023
KEYWORD
base,easy,nonn
AUTHOR
Amarnath Murthy, Dec 22 2001
EXTENSIONS
Corrected and extended by Robert G. Wilson v, Dec 28 2001
Offset changed from 1 to 0 by Harry J. Smith, Mar 08 2010
STATUS
approved