Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jul 21 2023 01:43:40
%S 1,3,6,10,15,21,28,38,50,64,80,98,118,140,164,190,220,253,289,328,370,
%T 415,463,514,568,625,685,748,816,888,964,1044,1128,1216,1308,1404,
%U 1504,1608,1716,1828,1944,2064,2188,2318,2453,2593,2738,2888
%N 1 + partial sums of A032378.
%C A032378 has been inspired by the Concrete Mathematics Casino problem (see reference).
%D R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. 2nd Edition. Addison-Wesley, Reading, MA, 1994. Section 3.2, p74-76.
%H G. C. Greubel, <a href="/A066353/b066353.txt">Table of n, a(n) for n = 0..10000</a>
%F a(n) = 1 if n = 0, otherwise a(n) = A112873(n) = Sum_{j=1..n} A032378(j).
%t A032378:= A032378= Table[k*j, {k,15}, {j,k^2+1, k^2+3*k+3}]//Flatten;
%t A066353[n_]:= A066353[n]= 1 +Sum[A032378[[j+1]], {j,0,n-1}];
%t Table[A066353[n], {n,0,100}] (* _G. C. Greubel_, Jul 20 2023 *)
%o (Magma)
%o A032378:=[k*j: j in [(k^2+1)..(k^2+3*k+3)], k in [1..15]];
%o [n eq 0 select 1 else 1+(&+[A032378[j]: j in [1..n]]): n in [0..100]]; // _G. C. Greubel_, Jul 20 2023
%o (SageMath)
%o A032378=flatten([[k*j for j in range((k^2+1),(k^2+3*k+3)+1)] for k in range(1,15)])
%o def A066353(n): return 1 if (n==0) else 1 + sum(A032378[j] for j in range(n))
%o [A066353(n) for n in range(101)] # _G. C. Greubel_, Jul 20 2023
%Y Cf. A032378, A112873.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, Dec 22 2001