

A066345


Winning binary "same game" templates of length n as defined below.


3



1, 1, 4, 7, 20, 39, 96, 191, 432, 863, 1856, 3711, 7744, 15487, 31744, 63487, 128768, 257535, 519168, 1038335, 2085888, 4171775, 8364032, 16728063, 33501184, 67002367, 134103040, 268206079, 536625152, 1073250303, 2146959360
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

A "same game template" is a pattern representing the run pattern of a string in a 2 symbol alphabet. Each position in the template represents either an isolated symbol, or a run of two or more identical symbols. Such a template can be represented as a ternary number without digit 0 (A007931), where 2 represents any run of 2 or more identical symbols and ternary 1 represents remaining single bitsymbols, e.g. 211 for 0010, 1101, 00010, etc. A winning template represents an infinite subset of winning binary "same games", e.g. 121 for 0110, 1001, 01110, etc.


LINKS



FORMULA

a(2*n1)= 2^(2*n1) n * 2^(n1), a(2*n)= 2*a(2*n1) 1.
G.f. x*( 1x3*x^2+4*x^3+4*x^44*x^5 ) / ( (x1)*(2*x1)*(1+x)*(1+2*x^2)^2 ).  R. J. Mathar, May 07 2013


EXAMPLE

There are a(3)= 4 winning templates 121, 122, 221, 222 with 3 ternary digits and a(4)= 7 winning templates 1212, 2121, 1222, 2221, 2122, 2212, 2222.


CROSSREFS



KEYWORD

nonn,easy


AUTHOR



STATUS

approved



