login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers which are sums of cubes of some subset of divisors.
4

%I #21 May 27 2024 08:06:29

%S 1,8,27,36,64,72,125,216,252,288,343,378,512,520,576,584,729,738,756,

%T 792,828,855,954,972,1000,1044,1331,1350,1440,1520,1540,1728,1764,

%U 1800,1890,1944,1980,2016,2070,2160,2197,2304,2352,2376,2400,2484,2520,2548

%N Numbers which are sums of cubes of some subset of divisors.

%C There are cubes that have not a single, trivial representation but more than one. These start with 27000 =+8^3+9^3+10^3+12^3+15^3+18^3+24^3 =+1^3+2^3+4^3+6^3+8^3+10^3+15^3+20^3+24^3 = +2^3+4^3+9^3+10^3+15^3+20^3+24^3 =+1^3+2^3+4^3+12^3+15^3+20^3+24^3 =+2^3+3^3+4^3+5^3+6^3+12^3+15^3+18^3+25^3 =+1^3+4^3+5^3+6^3+8^3+9^3+12^3+20^3+25^3 =+15^3+20^3+25^3 = +1^3+3^3+6^3+8^3+9^3+18^3+27^3 =+30^3 and 46656 =+1^3+2^3+3^3+6^3+8^3+9^3+12^3+16^3+18^3+24^3+27^3 =+4^3+24^3+32^3 =+36^3 and 74088 =+2^3+6^3+7^3+8^3+9^3+12^3+18^3+21^3+24^3+27^3+28^3 =+4^3+6^3+8^3+14^3+18^3+21^3+24^3+27^3+28^3 =+42^3. - _R. J. Mathar_, Jan 21 2024

%C If m is in the sequence then so is m*k^3 for k >= 1. - _David A. Corneth_, Jan 21 2024

%H David A. Corneth, <a href="/A066215/b066215.txt">Table of n, a(n) for n = 1..10286</a> (first 649 terms from R. J. Mathar)

%H R. J. Mathar, <a href="/A066215/a066215.txt">Examples/decompositions for entries <10000</a>

%e 72 is in the list since 72 = 2^3 + 4^3 and 2 and 4 are divisors of 72

%t okQ[k_] := AnyTrue[Subsets[Select[Divisors[k]^3, # <= k&]], Total[#]==k&];

%t Reap[For[k = 1, k <= 10000, k++, If[okQ[k], Print[k]; Sow[k]]]][[2, 1]] (* _Jean-François Alcover_, May 27 2024 *)

%Y Cf. A000578, A066214, A066213, A066216.

%K nonn

%O 1,2

%A _Erich Friedman_, Dec 17 2001