OFFSET
1,2
COMMENTS
There are cubes that have not a single, trivial representation but more than one. These start with 27000 =+8^3+9^3+10^3+12^3+15^3+18^3+24^3 =+1^3+2^3+4^3+6^3+8^3+10^3+15^3+20^3+24^3 = +2^3+4^3+9^3+10^3+15^3+20^3+24^3 =+1^3+2^3+4^3+12^3+15^3+20^3+24^3 =+2^3+3^3+4^3+5^3+6^3+12^3+15^3+18^3+25^3 =+1^3+4^3+5^3+6^3+8^3+9^3+12^3+20^3+25^3 =+15^3+20^3+25^3 = +1^3+3^3+6^3+8^3+9^3+18^3+27^3 =+30^3 and 46656 =+1^3+2^3+3^3+6^3+8^3+9^3+12^3+16^3+18^3+24^3+27^3 =+4^3+24^3+32^3 =+36^3 and 74088 =+2^3+6^3+7^3+8^3+9^3+12^3+18^3+21^3+24^3+27^3+28^3 =+4^3+6^3+8^3+14^3+18^3+21^3+24^3+27^3+28^3 =+42^3. - R. J. Mathar, Jan 21 2024
If m is in the sequence then so is m*k^3 for k >= 1. - David A. Corneth, Jan 21 2024
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10286 (first 649 terms from R. J. Mathar)
R. J. Mathar, Examples/decompositions for entries <10000
EXAMPLE
72 is in the list since 72 = 2^3 + 4^3 and 2 and 4 are divisors of 72
MATHEMATICA
okQ[k_] := AnyTrue[Subsets[Select[Divisors[k]^3, # <= k&]], Total[#]==k&];
Reap[For[k = 1, k <= 10000, k++, If[okQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, May 27 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Erich Friedman, Dec 17 2001
STATUS
approved