login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066215
Numbers which are sums of cubes of some subset of divisors.
4
1, 8, 27, 36, 64, 72, 125, 216, 252, 288, 343, 378, 512, 520, 576, 584, 729, 738, 756, 792, 828, 855, 954, 972, 1000, 1044, 1331, 1350, 1440, 1520, 1540, 1728, 1764, 1800, 1890, 1944, 1980, 2016, 2070, 2160, 2197, 2304, 2352, 2376, 2400, 2484, 2520, 2548
OFFSET
1,2
COMMENTS
There are cubes that have not a single, trivial representation but more than one. These start with 27000 =+8^3+9^3+10^3+12^3+15^3+18^3+24^3 =+1^3+2^3+4^3+6^3+8^3+10^3+15^3+20^3+24^3 = +2^3+4^3+9^3+10^3+15^3+20^3+24^3 =+1^3+2^3+4^3+12^3+15^3+20^3+24^3 =+2^3+3^3+4^3+5^3+6^3+12^3+15^3+18^3+25^3 =+1^3+4^3+5^3+6^3+8^3+9^3+12^3+20^3+25^3 =+15^3+20^3+25^3 = +1^3+3^3+6^3+8^3+9^3+18^3+27^3 =+30^3 and 46656 =+1^3+2^3+3^3+6^3+8^3+9^3+12^3+16^3+18^3+24^3+27^3 =+4^3+24^3+32^3 =+36^3 and 74088 =+2^3+6^3+7^3+8^3+9^3+12^3+18^3+21^3+24^3+27^3+28^3 =+4^3+6^3+8^3+14^3+18^3+21^3+24^3+27^3+28^3 =+42^3. - R. J. Mathar, Jan 21 2024
If m is in the sequence then so is m*k^3 for k >= 1. - David A. Corneth, Jan 21 2024
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10286 (first 649 terms from R. J. Mathar)
EXAMPLE
72 is in the list since 72 = 2^3 + 4^3 and 2 and 4 are divisors of 72
MATHEMATICA
okQ[k_] := AnyTrue[Subsets[Select[Divisors[k]^3, # <= k&]], Total[#]==k&];
Reap[For[k = 1, k <= 10000, k++, If[okQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, May 27 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Erich Friedman, Dec 17 2001
STATUS
approved