login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065978
For even k >= 4, let f(k) = A066285(k/2) be the minimal difference between primes p and q whose sum is k. Such a k is in the sequence if f(k) > f(m) for all even m with 4 <= m < k.
7
4, 8, 16, 44, 92, 242, 256, 272, 292, 476, 530, 572, 682, 688, 1052, 1808, 2228, 3382, 3472, 3502, 3562, 4952, 6194, 7102, 10262, 17008, 20684, 37052, 45128, 49552, 80144, 137414, 251806, 349826, 362534, 742856, 1655152, 1872236, 2108282, 2319728, 2707118
OFFSET
1,1
COMMENTS
The values of f(a(n)) (given in A066286) appear to be divisible by 6, except the first two.
LINKS
Gilmar Rodriguez Pierluissi, Table of n, a(n) for n = 1..64 (terms 1..50 from Jon Perry, Robert G. Wilson and Dean Hickerson, terms 51..55 from Gilmar Rodriguez Pierluissi, terms 56..63 from Robert G. Wilson v)
EXAMPLE
4 = 2+2; the gap is 0. 6=3+3 (0). 8=3+5; the gap is 2, and this is the largest gap to date, so 8 is in the sequence.
10=5+5 (0), 12=5+7 (2), 14=7+7 (0), 16=5+11 (6), so 16 is in the sequence.
MATHEMATICA
f[n_] := For[p=n/2, True, p--, If[PrimeQ[p]&&PrimeQ[n-p], Return[n-2p]]]; For[n=4; max=-1, True, n+=2, If[f[n]>max, Print[n]; max=f[n]]]
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Jon Perry, Dec 09 2001
EXTENSIONS
More terms from Robert G. Wilson v and Dean Hickerson, Dec 10 2001
Changed offset to 1 (this is a list). - N. J. A. Sloane, Sep 07 2013
STATUS
approved