login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065904
Integers i > 1 for which there is one prime p such that i is a solution mod p of x^4 = 2.
5
2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24, 26, 29, 31, 32, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 59, 60, 61, 62, 64, 65, 70, 72, 73, 74, 75, 77, 79, 80, 82, 83, 85, 87, 89, 93, 94, 95, 96, 97, 99, 100, 101, 103, 108, 109, 111, 116, 119, 121
OFFSET
1,1
COMMENTS
Solutions mod p are represented by integers from 0 to p-1. The following equivalences holds for i > 1: There is a prime p such that i is a solution mod p of x^4 = 2 iff i^4 - 2 has a prime factor > i; i is a solution mod p of x^4 = 2 iff p is a prime factor of i^4 - 2 and p > i. i^4 - 2 has at most three prime factors > i. For i such that i^4 - 2 has no resp. two resp. three prime factors > i; cf. A065903 resp. A065905 resp. A065906.
LINKS
FORMULA
a(n) = n-th integer i such that i^4 - 2 has one prime factor > i.
EXAMPLE
a(3) = 4, since 4 is (after 2 and 3) the third integer i for which there is one prime p > i (viz. 127) such that i is a solution mod p of x^4 = 2, or equivalently, 4^4 - 2 = 254 = 2*127 has one prime factor > 4 (cf. A065902).
MAPLE
filter:= n -> nops(select(`>`, numtheory:-factorset(n^4-2), n))=1:
select(filter, [$2..1000]); # Robert Israel, Jan 30 2017
MATHEMATICA
okQ[n_] := Length[Select[FactorInteger[n^4 - 2][[All, 1]], # > n&]] == 1;
Select[Range[2, 200], okQ] (* Jean-François Alcover, Mar 26 2019, after Robert Israel *)
PROG
(PARI): a065904(m) = local(c, n, f, a, s, j); c = 0; n = 2; while(c<m, f = factor(n^4-2); a = matsize(f)[1]; s = []; for(j = 1, a, if(f[j, 1]>n, s = concat(s, f[j, 1]))); if(matsize(s)[2] == 1, print1(n, ", "); c++); n++) a065904(70)
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Nov 28 2001
STATUS
approved