login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065756 Generalization of the Genocchi numbers given by the Gandhi polynomials A(n+1,r) = r^5 A(n, r + 1) - (r - 1)^5 A(n, r); A(1,r) = r^5 - (r-1)^5. 2
1, 1, 31, 6721, 5850271, 15060446401, 94396946822431, 1258620297379341121, 32323181593821704288671, 1481630482369728860007652801, 114129022540066183425609121804831 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
M. Domaratzki, A Generalization of the Genocchi Numbers with Applications to Enumeration of Finite Automata, Technical Report 2001-449, Department of Computing and Information Science, Queen's University at Kingston (Kingston, Canada).
Michael Domaratzki, Combinatorial Interpretations of a Generalization of the Genocchi Numbers, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.6.
D. Dumont, Sur une conjecture de Gandhi concernant les nombres de Genocchi, (in French), Discrete Mathematics 1 (1972) 321-327.
D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
FORMULA
a(n) = A(n-1, 1) for the above Gandhi polynomials.
MATHEMATICA
a[n_ /; n >= 0, r_ /; r >= 0] := a[n, r] = r^5*a[n-1, r+1]-(r-1)^5*a[n-1, r]; a[1, r_ /; r >= 0] := r^5-(r-1)^5; a[_, _] = 1; a[n_] := a[n-1, 1]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, May 23 2013 *)
CROSSREFS
Sequence in context: A245290 A090681 A297767 * A263378 A306840 A212858
KEYWORD
easy,nonn
AUTHOR
Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 17 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 10:14 EDT 2024. Contains 375904 sequences. (Running on oeis4.)