The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065611 Let k be the least integer such that n^2 + Sum_{m=1..k} m^2 is a perfect square, then a(n) is the resulting square. 2
 1, 35721, 9, 64, 150700176, 1521, 1718434116, 3844, 1849, 900, 2209, 474721, 529, 116964, 400, 419845682025, 618399795456, 3600, 187489, 1734149230641, 10816, 1681, 5560164, 2025, 961, 1444, 961, 784, 41209, 21926752125201 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS I.e., n^2 + {1 + 4 + 9 + 16 + ... + m^2} = a(n) = A065612(n)^2 = A065311(n). a(n) is the smallest square obtained as n^2 + x*(x+1)*(2x+1)/6 where x = A065610(n). LINKS Harry J. Smith, Table of n, a(n) for n = 0..500 EXAMPLE n = 3: a(3) = 64 because n^2 + 1 + 4 + 9 + 16 + 25 = 9 + (1 + 4 + 9 + 16 + 25) = 64 = 8^2; n = 4: a(4) = 150700176 because n^2 + (1 + 4 + ... + 767^2) = 150700176 = 12276^2, where 767 is the length of the shortest such consecutive-square sequence which provides(when summed) a new square, namely 12276^2. Often the least solution is rather large. E.g., a(93) = 23850559947150225 which means that 93^2 + A000330(415151) = 8649 + [a long square sum] = 154436265^2 = 23850559947150225. MATHEMATICA Do[s = n^2; k = 1; While[s = s + k^2; !IntegerQ[ Sqrt[s]], k++ ]; Print[s], {n, 0, 30} ] PROG (PARI) { for (n = 0, 500, s=n^2 + 1; k=1; while (!issquare(s), k++; s+=k^2); write("b065611.txt", n, " ", s) ) } \\ Harry J. Smith, Oct 23 2009 (PARI) a(n) = my(s=n^2+1, k=1); while (!issquare(s), k++; s+=k^2); s; \\ Michel Marcus, Mar 24 2020 CROSSREFS Cf. A000330, A065610, A065612. Sequence in context: A161023 A252920 A156405 * A101252 A133281 A326320 Adjacent sequences: A065608 A065609 A065610 * A065612 A065613 A065614 KEYWORD nonn AUTHOR Labos Elemer, Nov 07 2001 EXTENSIONS Edited by Jon E. Schoenfield, Jun 14 2018 Name clarified by Michel Marcus, Mar 24 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 2 02:53 EDT 2023. Contains 361723 sequences. (Running on oeis4.)