login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065532
a(n) = 48*n^2 - 1.
2
-1, 47, 191, 431, 767, 1199, 1727, 2351, 3071, 3887, 4799, 5807, 6911, 8111, 9407, 10799, 12287, 13871, 15551, 17327, 19199, 21167, 23231, 25391, 27647, 29999, 32447, 34991, 37631, 40367, 43199, 46127, 49151, 52271, 55487, 58799, 62207, 65711, 69311, 73007, 76799
OFFSET
0,2
FORMULA
From Vincenzo Librandi, Jul 08 2012: (Start)
G.f.: (1 - 50*x - 47*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 19 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(4*sqrt(3)))*Pi/(4*sqrt(3)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(4*sqrt(3)))*Pi/(4*sqrt(3)) - 1)/2. (End)
MATHEMATICA
CoefficientList[Series[(1-50*x-47*x^2)/(x-1)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 08 2012 *)
LinearRecurrence[{3, -3, 1}, {-1, 47, 191}, 40] (* Harvey P. Dale, Dec 13 2017 *)
PROG
(PARI) A065532(n)=48*n^2-1
(PARI) { for (n=0, 1000, write("b065532.txt", n, " ", 48*n^2 - 1) ) } \\ Harry J. Smith, Oct 21 2009
(Magma) [48*n^2 - 1: n in [0..50]]; // Vincenzo Librandi, Jul 08 2012
CROSSREFS
Sequence in context: A204610 A158632 A142413 * A157362 A141874 A224325
KEYWORD
sign,easy
AUTHOR
Labos Elemer, Nov 28 2001
EXTENSIONS
Better description from Randall L Rathbun, Jan 19 2002
Offset changed from 1 to 0 by Harry J. Smith, Oct 21 2009
STATUS
approved