login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057115 conjugated with A059893, inverse of A065259.
6

%I #31 May 02 2017 22:17:15

%S 2,4,1,8,6,12,3,16,10,20,5,24,14,28,7,32,18,36,9,40,22,44,11,48,26,52,

%T 13,56,30,60,15,64,34,68,17,72,38,76,19,80,42,84,21,88,46,92,23,96,50,

%U 100,25,104,54,108,27,112,58,116,29,120,62,124,31,128,66,132,33,136,70

%N A057115 conjugated with A059893, inverse of A065259.

%C This permutation of N induces also such permutation of Z, that p(i)-i >= 0 for all i.

%H Colin Barker, <a href="/A065260/b065260.txt">Table of n, a(n) for n = 1..1000</a>

%H Joe Buhler and R. L. Graham, <a href="http://www.cecm.sfu.ca/organics/papers/buhler/index.html">Juggling Drops and Descents</a>, Amer. Math. Monthly, 101, (no. 6) 1994, 507 - 519.

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,2,0,0,0,-1).

%F a(n) = A059893(A057115(A059893(n))).

%F a(2*k+2) = 4*k+4, a(4*k+1) = 4*k+2, a(4*k+3) = 2*k+1. - _Ralf Stephan_, Jun 10 2005

%F G.f.: x*(x^6+4*x^5+2*x^4+8*x^3+x^2+4*x+2) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - _Colin Barker_, Feb 18 2013

%F a(n) = 2*a(n-4) - a(n-8) for n>8. - _Colin Barker_, Oct 29 2016

%F a(n) = (11*n+1+(5*n-1)*(-1)^n-(n+3)*(1-(-1)^n)*(-1)^((2*n+3+(-1)^n)/4))/8. - _Luce ETIENNE_, Oct 20 2016

%e G.f. = 2*x + 4*x^2 + x^3 + 8*x^4 + 6*x^5 + 12*x^6 + 3*x^7 + 16*x^8 + ...

%o (PARI) Vec(x*(2+4*x+x^2+8*x^3+2*x^4+4*x^5+x^6)/((1-x)^2*(1+x)^2*(1+x^2)^2) + O(x^100)) \\ _Colin Barker_, Oct 29 2016

%o (PARI) {a(n) = if( n%2==0, n*2, n%4==1, n+1, n\2)}; /* _Michael Somos_, Nov 06 2016 */

%Y Cf. also A065171. The siteswap sequence (deltas) is A065261.

%K nonn,easy

%O 1,1

%A _Antti Karttunen_, Oct 28 2001