login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065260
A057115 conjugated with A059893, inverse of A065259.
6
2, 4, 1, 8, 6, 12, 3, 16, 10, 20, 5, 24, 14, 28, 7, 32, 18, 36, 9, 40, 22, 44, 11, 48, 26, 52, 13, 56, 30, 60, 15, 64, 34, 68, 17, 72, 38, 76, 19, 80, 42, 84, 21, 88, 46, 92, 23, 96, 50, 100, 25, 104, 54, 108, 27, 112, 58, 116, 29, 120, 62, 124, 31, 128, 66, 132, 33, 136, 70
OFFSET
1,1
COMMENTS
This permutation of N induces also such permutation of Z, that p(i)-i >= 0 for all i.
LINKS
Joe Buhler and R. L. Graham, Juggling Drops and Descents, Amer. Math. Monthly, 101, (no. 6) 1994, 507 - 519.
FORMULA
a(n) = A059893(A057115(A059893(n))).
a(2*k+2) = 4*k+4, a(4*k+1) = 4*k+2, a(4*k+3) = 2*k+1. - Ralf Stephan, Jun 10 2005
G.f.: x*(x^6+4*x^5+2*x^4+8*x^3+x^2+4*x+2) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - Colin Barker, Feb 18 2013
a(n) = 2*a(n-4) - a(n-8) for n>8. - Colin Barker, Oct 29 2016
a(n) = (11*n+1+(5*n-1)*(-1)^n-(n+3)*(1-(-1)^n)*(-1)^((2*n+3+(-1)^n)/4))/8. - Luce ETIENNE, Oct 20 2016
EXAMPLE
G.f. = 2*x + 4*x^2 + x^3 + 8*x^4 + 6*x^5 + 12*x^6 + 3*x^7 + 16*x^8 + ...
PROG
(PARI) Vec(x*(2+4*x+x^2+8*x^3+2*x^4+4*x^5+x^6)/((1-x)^2*(1+x)^2*(1+x^2)^2) + O(x^100)) \\ Colin Barker, Oct 29 2016
(PARI) {a(n) = if( n%2==0, n*2, n%4==1, n+1, n\2)}; /* Michael Somos, Nov 06 2016 */
CROSSREFS
Cf. also A065171. The siteswap sequence (deltas) is A065261.
Sequence in context: A258065 A065290 A065266 * A257794 A345881 A372868
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Oct 28 2001
STATUS
approved