OFFSET
1,1
COMMENTS
All prime numbers greater than 3 are in this sequence. Given p prime, it is easy to see that phi(p) = p - 1 and therefore the cototient of p is 1. For p > 3, phi(p) = 2q, with q > 1 an odd number not necessarily prime. Then 2q - 1 > 2q - phi(2q) > 1. - Alonso del Arte, Jun 02 2013
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..1000
FORMULA
EXAMPLE
11 is in the sequence, since phi(11) = 10, cototient(11) = 1, phi(1) = 1 < cototient(10) = 4.
MATHEMATICA
eu[n_] := EulerPhi[n]; co[n_] := n - EulerPhi[n]; A065152 = Table[co[eu[w]] - eu[co[w]], {w, 1, 256}]; Flatten[Position[Sign[A065152], 1]]
(* alternative program *)
Select[Range[100], EulerPhi[#] - EulerPhi[EulerPhi[#]] > EulerPhi[# - EulerPhi[#]] &] (* Alonso del Arte, Jun 02 2013 *)
PROG
(PARI) { n=0; for (m = 2, 10^9, t=eulerphi(m); c=m - t; if (t - eulerphi(t) > eulerphi(c), write("b065155.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 13 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 19 2001
STATUS
approved