login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065072
Number of ways to tile a square of side 2n by dominoes (rectangles of size 2 X 1 or 1 X 2) is 2^n * a(n)^2 (see A004003).
15
1, 1, 3, 29, 901, 89893, 28793575, 29607089625, 97725875584681, 1035449388414303593, 35216739783694029601963, 3844747107219467355553841461, 1347358497824862447450096142795629, 1515633798331963142551890627742773295309
OFFSET
0,3
COMMENTS
A099390 is the main entry for this problem. - N. J. A. Sloane, Mar 15 2015
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..50 (terms n=1..25 from T. D. Noe)
H. Cohn, 2-adic behavior of numbers of domino tilings, arXiv:math/0008222 [math.CO], 2000.
Philippe Di Francesco, Twenty Vertex model and domino tilings of the Aztec triangle, arXiv:2102.02920 [math.CO], 2021. Mentions this sequence.
Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter, and Tianyuan Xu, Sandpiles and Dominos, Electronic Journal of Combinatorics, Volume 22(1), 2015. [Mentions this sequence together with a different sequence (A256043) with the same initial terms]
Peter E. John and Horst Sachs, On a strange observation in the theory of the dimer problem, Discrete Math. 216 (2000), no. 1-3, 211-219. [N. J. A. Sloane, Feb 06 2012]
James Propp, Some 2-Adic Conjectures Concerning Polyomino Tilings of Aztec Diamonds, Integers (2023) Vol. 23, Art. A30.
FORMULA
a(n) ~ exp(G*(2*n + 1)^2/(2*Pi)) / (2^((n-1)/2) * (1 + sqrt(2))^(n + 1/2)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Apr 14 2020, updated Dec 30 2020
EXAMPLE
G.f. = 1 + x + 3*x^2 + 29*x^3 + 901*x^4 + 89893*x^5 + 28793575*x^6 + ...
MATHEMATICA
a[n_] := With[{L = 2n}, Sqrt[Product[4 Cos[p Pi/(L+1)]^2 + 4 Cos[q Pi/(L+1)]^2, {p, 1, L/2}, {q, 1, L/2}]/2^(L/2)] // Round];
Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Nov 11 2018 *)
Table[Resultant[ChebyshevU[2*n, x/2], ChebyshevU[2*n, I*x/2], x]^(1/4) / 2^(n/2), {n, 0, 15}] (* Vaclav Kotesovec, Dec 30 2020 *)
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Nicolau C. Saldanha (nicolau(AT)mat.puc-rio.br), Nov 08 2001
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Mar 25 2015
STATUS
approved