login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*usigma(n), where usigma(n) is the sum of unitary divisors of n (A034448).
1

%I #19 Sep 20 2020 08:18:14

%S 1,6,12,20,30,72,56,72,90,180,132,240,182,336,360,272,306,540,380,600,

%T 672,792,552,864,650,1092,756,1120,870,2160,992,1056,1584,1836,1680,

%U 1800,1406,2280,2184,2160,1722,4032,1892,2640,2700,3312,2256

%N a(n) = n*usigma(n), where usigma(n) is the sum of unitary divisors of n (A034448).

%H Harry J. Smith, <a href="/A064971/b064971.txt">Table of n, a(n) for n = 1..1000</a>

%F Multiplicative with a(p^e) = p^e*(p^e+1). - _Vladeta Jovovic_, Nov 01 2001

%F Dirichlet g.f.: zeta(s-1)*zeta(s-2)/zeta(2*s-3). - _R. J. Mathar_, Feb 09 2011

%F Sum_{k=1..n} a(k) ~ Pi^2 * n^3 / (18*Zeta(3)). - _Vaclav Kotesovec_, Feb 01 2019

%F Sum_{k>=1} 1/a(k) = Product_{primes p} (3/2 + 1/(p-1) - (log(1-p) + QPolyGamma(1 - i*Pi/log(p), p))/log(p)) = 1.46909915920728851157169314962365889937120909118052326761431400799664418179... - _Vaclav Kotesovec_, Sep 20 2020

%p seq(mul(ifactors(n)[2][i][1]^ifactors(n)[2][i][2]*(1+ifactors(n)[2][i][1]^ifactors(n)[2][i][2]),i=1..nops(ifactors(n)[2])), n=1..50);

%o (PARI) usigma(n)= { local(f,s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) } { for (n=1, 1000, write("b064971.txt", n, " ", n*usigma(n)) ) } \\ _Harry J. Smith_, Oct 01 2009

%Y Cf. A034448.

%K mult,nonn

%O 1,2

%A _N. J. A. Sloane_, Oct 30 2001