login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064971
a(n) = n*usigma(n), where usigma(n) is the sum of unitary divisors of n (A034448).
1
1, 6, 12, 20, 30, 72, 56, 72, 90, 180, 132, 240, 182, 336, 360, 272, 306, 540, 380, 600, 672, 792, 552, 864, 650, 1092, 756, 1120, 870, 2160, 992, 1056, 1584, 1836, 1680, 1800, 1406, 2280, 2184, 2160, 1722, 4032, 1892, 2640, 2700, 3312, 2256
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = p^e*(p^e+1). - Vladeta Jovovic, Nov 01 2001
Dirichlet g.f.: zeta(s-1)*zeta(s-2)/zeta(2*s-3). - R. J. Mathar, Feb 09 2011
Sum_{k=1..n} a(k) ~ Pi^2 * n^3 / (18*Zeta(3)). - Vaclav Kotesovec, Feb 01 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (3/2 + 1/(p-1) - (log(1-p) + QPolyGamma(1 - i*Pi/log(p), p))/log(p)) = 1.46909915920728851157169314962365889937120909118052326761431400799664418179... - Vaclav Kotesovec, Sep 20 2020
MAPLE
seq(mul(ifactors(n)[2][i][1]^ifactors(n)[2][i][2]*(1+ifactors(n)[2][i][1]^ifactors(n)[2][i][2]), i=1..nops(ifactors(n)[2])), n=1..50);
PROG
(PARI) usigma(n)= { local(f, s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) } { for (n=1, 1000, write("b064971.txt", n, " ", n*usigma(n)) ) } \\ Harry J. Smith, Oct 01 2009
CROSSREFS
Cf. A034448.
Sequence in context: A180291 A056930 A326378 * A130199 A295904 A309836
KEYWORD
mult,nonn
AUTHOR
N. J. A. Sloane, Oct 30 2001
STATUS
approved