login
A064715
Smallest member of triple of consecutive numbers each of which is the sum of two different nonzero squares.
2
232, 520, 584, 800, 808, 1096, 1224, 1312, 1600, 1664, 1744, 1800, 1872, 1960, 2248, 2312, 2384, 2600, 2824, 3328, 3392, 3600, 4112, 4176, 4328, 4624, 5120, 5328, 5408, 5904, 6056, 6120, 6352, 6408, 6568, 6920, 8080, 8144, 8296, 8352, 8584, 9160, 9376
OFFSET
1,1
COMMENTS
All terms == 0 mod 8. Is this the same as A073412? - Zak Seidov, Jan 26 2013
This sequence is distinct from A073412 since it does not allow numbers equal to twice a square, like 72, 1152, 2592, 3528, etc. - Giovanni Resta, Jan 29 2013
REFERENCES
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books Ltd., Middlesex, England, 1997, page 133. - "It is not possible to have 4 such consecutive numbers."
EXAMPLE
232 = 6^2 + 14^2, 233 = 8^2 + 13^2, and 234 = 3^2 + 15^2.
MATHEMATICA
a = Table[n^2, {n, 1, 100} ]; c = {}; Do[ c = Append[c, a[[i]] + a[[j]]], {i, 1, 100}, {j, 1, i - 1} ]; c = Union[c]; c[[ Select[ Range[ Length[c] - 2], c[[ # ]] + 2 == c[[ # + 2 ]] & ]]]
CROSSREFS
Cf. A004431.
Sequence in context: A277076 A250645 A179246 * A245006 A252273 A153466
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Oct 13 2001
STATUS
approved