The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064702 Nonnegative numbers such that additive and multiplicative digital roots coincide. 5
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 123, 132, 137, 139, 168, 173, 179, 186, 188, 193, 197, 213, 231, 233, 267, 276, 299, 312, 317, 319, 321, 323, 332, 346, 364, 371, 389, 391, 398, 436, 463, 618, 627, 634, 643, 672, 681, 713, 719, 726, 731, 762, 791, 816, 818, 839 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS If k is in this sequence then all permutations of (the digits of) k are in this sequence. A010888(a(n)) = A031347(a(n)). - Reinhard Zumkeller, Jul 10 2013 LINKS Nathaniel Johnston, Table of n, a(n) for n = 1..10000 Eric Weisstein's World of Mathematics, Digital Root Eric Weisstein's World of Mathematics, Multiplicative Digital Root Wikipedia, Digital root Wikipedia, Multiplicative digital root Index entries for 10-automatic sequences. MAPLE A007954 := proc(n) return mul(d, d=convert(n, base, 10)): end: A031347 := proc(n) local m: m:=n: while(length(m)>1)do m:=A007954(m): od: return m: end: A064702 := proc(n) option remember: local k: if(n=1)then return 1:fi: for k from procname(n-1)+1 do if(A031347(k)-1 = (k-1) mod 9)then return k: fi: od: end: seq(A064702(n), n=1..56); # Nathaniel Johnston, May 04 2011 MATHEMATICA okQ[n_]:=NestWhile[Times@@IntegerDigits[#]&, n, #>9&]== NestWhile[ Total[ IntegerDigits[#]]&, n, #>9&]; Select[Range[1000], okQ] (* Harvey P. Dale, Apr 20 2011 *) PROG (Haskell) a064702 n = a064702_list !! (n-1) a064702_list = filter (\x -> a010888 x == a031347 x) [1..] -- Reinhard Zumkeller, Jul 10 2013 (PARI) is(n) = my(cn = n); while(cn > 9, d = digits(cn); cn = prod(i = 1, #d, d[i])); cn - 1 == (n-1)%9 \\ David A. Corneth, Aug 23 2018 (Python) from math import prod def A010888(n): while n > 9: n = sum(map(int, str(n))) return n def A031347(n): while n > 9: n = prod(map(int, str(n))) return n def ok(n): return A010888(n) == A031347(n) print([k for k in range(840) if ok(k)]) # Michael S. Branicky, Sep 17 2022 CROSSREFS Cf. A010888, A031347, A239427. Sequence in context: A249334 A338257 A064158 * A034710 A305257 A318273 Adjacent sequences: A064699 A064700 A064701 * A064703 A064704 A064705 KEYWORD easy,nice,nonn,base AUTHOR Santi Spadaro, Oct 12 2001 EXTENSIONS Definition rephrased by Reinhard Zumkeller, Jul 10 2013 Initial 0 added by Halfdan Skjerning, Aug 21 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 16:36 EDT 2024. Contains 372916 sequences. (Running on oeis4.)