%I #15 Apr 18 2020 22:08:54
%S 1,1,2,1,5,7,1,8,22,29,1,11,46,104,133,1,14,79,251,517,650,1,17,121,
%T 497,1369,2669,3319,1,20,172,869,2986,7541,14179,17498,1,23,232,1394,
%U 5746,17642,42031,77027,94525,1,26,301,2099,10108,36482,103696,236933
%N Triangle defined in A064641 read by rows.
%C Or, Dziemianczuk's array P(i,j) read by antidiagonals:
%C 1 2 7 29 133 650 3319 17498 ...
%C 1 5 22 104 517 2669 14179 77027 ...
%C 1 8 46 251 1369 7541 42031 236933 ...
%C 1 11 79 497 2986 17642 103696 609428 ...
%C 1 14 121 869 5746 36482 226768 1393637 ...
%C ...
%H Peter Kagey, <a href="/A064642/b064642.txt">Table of n, a(n) for n = 0..10010</a> (first 141 rows, flattened)
%H M. Dziemianczuk, <a href="http://dx.doi.org/10.1007/s00373-013-1357-1">Counting Lattice Paths With Four Types of Steps</a>, Graphs and Combinatorics, September 2013, Volume 30, Issue 6, pp 1427-1452.
%e Triangle begins
%e 1;
%e 1, 2;
%e 1, 5, 7;
%e 1, 8, 22, 29;
%e ...
%Y Cf. A064641, A232972.
%K nonn,tabl
%O 0,3
%A _Floor van Lamoen_, Oct 03 2001