login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 2 X 2 symmetric singular matrices with entries from {0,...,n}.
2

%I #15 Nov 07 2024 03:49:18

%S 1,4,7,10,15,18,21,24,29,36,39,42,47,50,53,56,65,68,75,78,83,86,89,92,

%T 97,108,111,118,123,126,129,132,141,144,147,150,163,166,169,172,177,

%U 180,183,186,191,198,201,204,213,228,239,242,247,250,257,260,265,268

%N Number of 2 X 2 symmetric singular matrices with entries from {0,...,n}.

%H Vaclav Kotesovec, <a href="/A064368/b064368.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) = n + 1 + 2*Sum_{k=1..n} Sum_{d^2|k} phi(d), where phi = Euler totient function A000010.

%F a(n) ~ (n/zeta(2)) * (log(n) + 3*gamma - 1 + zeta(2) - 2*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). - _Amiram Eldar_, Nov 07 2024

%t f[p_, e_] := p^Floor[e/2]; a[0] = 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; With[{max = 100}, 1 + Range[0, max] + 2 * Accumulate[Array[a, max + 1, 0]]] (* _Amiram Eldar_, Nov 07 2024 *)

%o (PARI) a(n) = n + 1 + 2*sum(k=1, n, sumdiv(k, d, issquare(d)*eulerphi(sqrtint(d)))) \\ _Michel Marcus_, Jun 17 2013

%Y Cf. A000010, A000188, A064276, A059306, A062801, A059976, A039623.

%Y Cf. A001620, A306016.

%K nonn

%O 0,2

%A _Vladeta Jovovic_, Sep 27 2001