login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064368
Number of 2 X 2 symmetric singular matrices with entries from {0,...,n}.
2
1, 4, 7, 10, 15, 18, 21, 24, 29, 36, 39, 42, 47, 50, 53, 56, 65, 68, 75, 78, 83, 86, 89, 92, 97, 108, 111, 118, 123, 126, 129, 132, 141, 144, 147, 150, 163, 166, 169, 172, 177, 180, 183, 186, 191, 198, 201, 204, 213, 228, 239, 242, 247, 250, 257, 260, 265, 268
OFFSET
0,2
LINKS
FORMULA
a(n) = n + 1 + 2*Sum_{k=1..n} Sum_{d^2|k} phi(d), where phi = Euler totient function A000010.
a(n) ~ (n/zeta(2)) * (log(n) + 3*gamma - 1 + zeta(2) - 2*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 07 2024
MATHEMATICA
f[p_, e_] := p^Floor[e/2]; a[0] = 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; With[{max = 100}, 1 + Range[0, max] + 2 * Accumulate[Array[a, max + 1, 0]]] (* Amiram Eldar, Nov 07 2024 *)
PROG
(PARI) a(n) = n + 1 + 2*sum(k=1, n, sumdiv(k, d, issquare(d)*eulerphi(sqrtint(d)))) \\ Michel Marcus, Jun 17 2013
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Sep 27 2001
STATUS
approved