OFFSET
1,5
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 331-339.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..378
Steven R. Finch, Self-Avoiding Walks of a Rook on a Chessboard [From Steven Finch, Apr 20 2019]
Steven R. Finch, Self-Avoiding Walks of a Rook [From Steven Finch, Apr 20 2019; mentioned in Finch's "Gammel" link above]
Steven R. Finch, Table of Non-Overlapping Rook Paths [From Steven Finch, Apr 20 2019; mentioned in Finch's "Gammel" link above]
EXAMPLE
The start of the sequence as table:
* 1 1 1 1 1 1 1 ...
* 1 2 4 8 16 32 64 ...
* 1 4 12 38 125 414 1369 ...
* 1 8 38 184 976 5382 29739 ...
* 1 16 125 976 8512 79384 752061 ...
* 1 32 414 5382 79384 1262816 20562673 ...
* 1 64 1369 29739 752061 20562673 575780564 ...
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A064298(n, k):
if n == 1 or k == 1: return 1
universe = tl.grid(n - 1, k - 1)
GraphSet.set_universe(universe)
start, goal = 1, k * n
paths = GraphSet.paths(start, goal)
return paths.len()
print([A064298(j + 1, i - j + 1) for i in range(11) for j in range(i + 1)]) # Seiichi Manyama, Apr 06 2020
KEYWORD
AUTHOR
Henry Bottomley, Sep 05 2001
STATUS
approved