login
A064026
Numbers k such that d(k) + d(k+1) + d(k+2) = 8, where d(k) = A001223.
2
2, 3, 5, 26, 43, 142, 234, 286, 313, 458, 484, 743, 1167, 1548, 1823, 1833, 1867, 2066, 2151, 2199, 2362, 2493, 2789, 3410, 3718, 4559, 5251, 5618, 6317, 6696, 6899, 7147, 7590, 7807, 7932, 8083, 8602, 9402, 9517, 9682, 10438, 11006, 11239, 11494, 12618
OFFSET
1,1
COMMENTS
Prime(a(n)) = 3, 5, 11, 101, 191, 821, 1481, 1871, 2081, ...; starting with 11 on, all primes == 11 (mod 30). - Zak Seidov, Jan 25 2013
LINKS
Zak Seidov, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harry J. Smith)
MATHEMATICA
t={}; Do[If[Prime[n + 3] == Prime[n] + 8, AppendTo[t, n]], {n, 1000}]; t (* Zak Seidov, Jan 25 2013 *)
PROG
(PARI) d(n) = prime(n+1)-prime(n); e(n) = d(n)+d(n+1)+d(n+2); j=[]; for(n=1, 35000, if(e(n)==8, j=concat(j, n))); j
(PARI) d3(n)= { prime(n + 3) - prime(n) } { n=0; default(primelimit, 12000000); for (m=1, 10^9, if (d3(m)==8, write("b064026.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 06 2009
CROSSREFS
Cf. A001223.
Sequence in context: A181730 A024774 A068543 * A121264 A141566 A247094
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Sep 08 2001
STATUS
approved