login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063574 Number of steps to reach an integer == 1 (mod 4) when iterating the map n -> 3n/2 if n even or (3n+1)/2 if n odd. 4
0, 2, 1, 2, 0, 1, 2, 4, 0, 4, 1, 3, 0, 1, 3, 4, 0, 2, 1, 2, 0, 1, 2, 3, 0, 3, 1, 7, 0, 1, 4, 6, 0, 2, 1, 2, 0, 1, 2, 5, 0, 6, 1, 3, 0, 1, 3, 5, 0, 2, 1, 2, 0, 1, 2, 3, 0, 3, 1, 4, 0, 1, 5, 6, 0, 2, 1, 2, 0, 1, 2, 4, 0, 4, 1, 3, 0, 1, 3, 4, 0, 2, 1, 2, 0, 1, 2, 3, 0, 3, 1, 5, 0, 1, 4, 5, 0, 2, 1, 2, 0, 1, 2, 7, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

L. Flatto, Z-numbers and beta-transformations, in Symbolic dynamics and its applications (New Haven, CT, 1991), 181-201, Contemp. Math., 135, Amer. Math. Soc., Providence, RI, 1992.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

K. Mahler, An unsolved problem on the powers of 3/2, J. Austral. Math. Soc. 8 (1968), pp. 313-321.

FORMULA

For odd n: a(n)=A007814(n+1), for even n: A007814(n) steps until an odd number is reached, which leads directly to the formula: with b(n)=A007814(n) (binary carry sequence) a(n)=b(n)+b((3^b(n)*n/2^b(n)+1)/2) - Lambert Herrgesell (zero815(AT)googlemail.com) and Lambert Klasen (lambert.klasen(AT)gmx.net), Apr 24 2006. Hence in particular, a(n) is well-defined.

EXAMPLE

8 -> 12 -> 18 -> 27 -> 41 takes 4 steps so a(8) = 4.

MATHEMATICA

Table[Length[NestWhileList[If[EvenQ[#], (3#)/2, (3#+1)/2]&, n, Mod[#, 4]!= 1&]]-1, {n, 110}] (* Harvey P. Dale, Jul 06 2011 *)

PROG

(PARI) {stop=1000; for(n=1, 105, c=0; k=n; while((k%4)!=1&&c<stop, k=if(k%2==0, 3*k/2, (3*k+1)/2); c++); print1(if(c<stop, c, -1), ", "))}

(PARI) b(n)=valuation(n, 2); a(n)=b(n)+b((3^b(n)*n/2^b(n)+1)/2) - Lambert Herrgesell (zero815(AT)googlemail.com) and Lambert Klasen (lambert.klasen(AT)gmx.net), Apr 24 2006

(Haskell)

a063574 n = fst $ until ((== 1) . flip mod 4 . snd)

                        (\(u, v) -> (u + 1, a007494 v)) (0, n)

-- Reinhard Zumkeller, Dec 13 2014

CROSSREFS

Cf. A007494.

Sequence in context: A211359 A211357 A238416 * A144515 A178650 A028933

Adjacent sequences:  A063571 A063572 A063573 * A063575 A063576 A063577

KEYWORD

easy,nice,nonn

AUTHOR

N. J. A. Sloane, Sep 23 2002

EXTENSIONS

Extended by Klaus Brockhaus, Sep 23 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 04:54 EDT 2019. Contains 324145 sequences. (Running on oeis4.)