Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #51 Nov 23 2024 05:46:16
%S -1,2,7,11,16,20,25,29,34,38,43,47,52,56,61,65,70,74,79,83,88,92,97,
%T 101,106,110,115,119,124,128,133,137,142,146,151,155,160,164,169,173,
%U 178,182,187,191,196,200,205,209,214,218,223,227,232,236
%N Dimension of the space of weight n cuspidal newforms for Gamma_1( 16 ).
%C It appears that for n > 2 a(n) = floor((9n-22)/2). - _Gary Detlefs_, Mar 02 2010
%H William A. Stein, <a href="http://wstein.org/Tables/dimskg1new.gp">Dimensions of the spaces S_k^{new}(Gamma_1(N))</a>.
%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>.
%F a(n) = 9*n/2 + (-1)^n/4 - 45/4 for n >= 3, with first differences in A010710. - _R. J. Mathar_, Dec 06 2010
%F From _M. F. Hasler_, Mar 05 2012: (Start)
%F G.f.: x^2*(-1 + 3*x + 6*x^2 + x^3)/(1 - x - x^2 + x^3).
%F a(n+2) = a(n)+9 (n>2), a(2n+1) = a(2n)+4 (n>1), a(2n) = a(2n-1)+5 (n>1). (End)
%F Sum_{n>=3} (-1)^(n+1)/a(n) = cot(2*Pi/9)*Pi/9. - _Amiram Eldar_, Jan 12 2024
%F From _Amiram Eldar_, Nov 22 2024: (Start)
%F Product_{n>=3} (1 - (-1)^n/a(n)) = 2*sin(Pi/18) + 1 (= A130880 + 1).
%F Product_{n>=3} (1 + (-1)^n/a(n)) = (1/2) * sec(Pi/9) (= A332438 - 3). (End)
%t Join[{-1}, Table[9*n/2 + (-1)^n/4 - 45/4, {n, 3, 60}]] (* _Amiram Eldar_, Jan 12 2024 *)
%Y Cf. A063232, A063233, A017185 (bisection), A130880, A332438.
%K sign,easy
%O 2,2
%A _N. J. A. Sloane_, Jul 14 2001