login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of connected labeled graphs with loops.
51

%I #16 Feb 02 2024 17:52:52

%S 1,2,4,32,608,23296,1709056,238880768,64396439552,33943701028864,

%T 35324404321091584,72994114660256448512,300460426062916084563968,

%U 2468021884106048216693211136,40495494119922790159005962469376,1328011048967552376327692463141552128

%N Number of connected labeled graphs with loops.

%H Alois P. Heinz, <a href="/A062740/b062740.txt">Table of n, a(n) for n = 0..80</a>

%F E.g.f.: 1+log( Sum_{n >= 0} 2^binomial(n+1, 2)*x^n/n! ).

%F E.g.f.: A(2*x) where A(x) is the e.g.f. for A001187. - _Geoffrey Critzer_, Feb 01 2014

%p logtr:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else p(n)- add(k *binomial(n, k) *p(n-k) *b(k), k=1..n-1)/n fi end end:

%p a:= logtr(n-> 2^binomial(n+1, 2)):

%p seq(a(n), n=0..20); # _Alois P. Heinz_, Feb 01 2014

%t nn=14;g=Sum[2^Binomial[n,2](2x)^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[Log[g]+1,{x,0,nn}],x] (* _Geoffrey Critzer_, Feb 01 2014 *)

%Y Cf. A006125, A226773.

%K easy,nonn

%O 0,2

%A _Vladeta Jovovic_, Jul 12 2001