This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062317 Numbers n such that 5*n-1 is a perfect square. 4
 1, 2, 10, 13, 29, 34, 58, 65, 97, 106, 146, 157, 205, 218, 274, 289, 353, 370, 442, 461, 541, 562, 650, 673, 769, 794, 898, 925, 1037, 1066, 1186, 1217, 1345, 1378, 1514, 1549, 1693, 1730, 1882, 1921, 2081, 2122, 2290, 2333, 2509, 2554, 2738, 2785, 2977 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Harry J. Smith, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1). FORMULA a(n) = ((2+5n)^2 + 1)/5 if n is odd; a(n) = ((3+5n)^2 + 1)/5 if n is even. From R. J. Mathar, Jan 30 2010: (Start) a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). G.f.: x*(1+x+6*x^2+x^3+x^4)/((1+x)^2*(1-x)^3). (End) MATHEMATICA f[n_]:=IntegerQ[Sqrt[5*n-1]]; Select[Range[0, 8! ], f[ # ]&] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *) LinearRecurrence[{1, 2, -2, -1, 1}, {1, 2, 10, 13, 29}, 50] (* Harvey P. Dale, Dec 29 2018 *) PROG (PARI) je=[]; for(n=1, 5000, if(issquare(5*n-1), je=concat(je, n))); je (PARI) { n=0; for (m=1, 10^9, if (issquare(5*m - 1), write("b062317.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 04 2009 CROSSREFS Cf. A036666. Sequence in context: A297998 A037386 A250187 * A140510 A277087 A098735 Adjacent sequences:  A062314 A062315 A062316 * A062318 A062319 A062320 KEYWORD nonn,easy AUTHOR Santi Spadaro, Jul 12 2001 EXTENSIONS More terms from Jason Earls, Jul 14 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 21:25 EST 2019. Contains 329937 sequences. (Running on oeis4.)