

A062241


Smallest integer >= 2 that is not the sum of 2 positive integers whose prime factors are all <= p(n), the nth prime.


3



3, 7, 23, 71, 311, 479, 1559, 5711, 10559, 18191, 31391, 118271, 366791, 366791, 2155919, 2155919, 2155919, 6077111, 6077111, 98538359, 120293879, 131486759, 131486759, 508095719, 2570169839, 2570169839, 2570169839, 2570169839, 2570169839, 2570169839
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Here we are taking 1 to be the zeroth prime.
a(30) > 2570169839.  Donovan Johnson


REFERENCES

Computed by David W. Wilson, Jun 29, 2001.


LINKS

Table of n, a(n) for n=0..29.


EXAMPLE

a(1): 2=1+1, 3=1+2, 4=2+2, 5=1+4, 6=2+4, but 7 cannot be written as the sum of two positive integers whose prime factors are all <= 2, so a(1) = 7. a(2): 7=3+4, 8=4+4, 9=1+8, ..., 22=4+18, but 23 cannot be so written, so a(2) = 23.


CROSSREFS

So far it agrees with A045535. Is this a coincidence or a theorem?
Sequence in context: A140456 A066768 A225914 * A000229 A133435 A079061
Adjacent sequences: A062238 A062239 A062240 * A062242 A062243 A062244


KEYWORD

nonn,nice


AUTHOR

Richard Schroeppel , Jun 27 2001


EXTENSIONS

More terms from Jud McCranie, Nov 01 2001
a(23)a(29) from Donovan Johnson, Aug 31 2010.


STATUS

approved



