login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = sigma(d(n)), where d(k) is the number of divisors function (A000005) and sigma(k) is the sum of divisors function (A000203).
24

%I #36 Dec 15 2017 17:35:06

%S 1,3,3,4,3,7,3,7,4,7,3,12,3,7,7,6,3,12,3,12,7,7,3,15,4,7,7,12,3,15,3,

%T 12,7,7,7,13,3,7,7,15,3,15,3,12,12,7,3,18,4,12,7,12,3,15,7,15,7,7,3,

%U 28,3,7,12,8,7,15,3,12,7,15,3,28,3,7,12,12,7,15,3,18,6,7,3,28,7,7,7,15,3

%N a(n) = sigma(d(n)), where d(k) is the number of divisors function (A000005) and sigma(k) is the sum of divisors function (A000203).

%C a(1) = 1, a(p) = 3 for p = primes (A000040), a(pq) = 7 for pq = product of two distinct primes (A006881), a(pq...z) = 2^(k+1)-1 = A000225(k+1) for pq...z = product of k (k > 2) distinct primes p,q,...,z (A120944), a(p^k) = sigma(k+1) = A000203(k+1) for p^k = prime powers (A000961(n) for n > 1). Sequence {1,3,4,12} is finite sequence of numbers n such that sigma(tau(n)) = n. [_Jaroslav Krizek_, Jul 16 2009]

%C For semiprime n, a(n) is either 4 or 7. Also a(n) = d(n) + omega(n) + mu(n), the sum of three core sequences A000005, A001221 and A008683. When n is semiprime, a(n) is completely defined by the Mobius function as: a(n) = 4 + 3*mu(n). a(n) also has the fractal-like identities a(d(n)) = d(n) and a(n) = sigma(a(d(n))). - _Wesley Ivan Hurt_, Sep 02 2013

%C If n is a triprime (A014612), d(n) is 4, 6, or 8 and a(n) = sigma(d(n)) is 7, 12, or 15 respectively. Then a(n) = -d(n)^2/4 + 5*d(n) - 9. - _Wesley Ivan Hurt_, Sep 08 2013

%H Harry J. Smith, <a href="/A062069/b062069.txt">Table of n, a(n) for n=1,...,1000</a>

%F a(n) = A000203(A000005(n)). - _Wesley Ivan Hurt_, Sep 09 2013

%e sigma(d(12)) = sigma(6) = 12.

%p A062069:= (n-> numtheory[sigma](numtheory[tau](n))):

%p seq (A062069(n), n=1..40); # _Jani Melik_, Jan 25 2011

%t Table[DivisorSigma[1, DivisorSigma[0, n]], {n, 1, 80}] (* _Carl Najafi_, Aug 16 2011 *)

%o (PARI) v=[]; for(n=1,150,v=concat(v, sigma(numdiv(n)))); v

%o (PARI) { for (n=1, 1000, write("b062069.txt", n, " ", sigma(numdiv(n))) ) } \\ _Harry J. Smith_, Jul 31 2009

%Y Cf. A000005, A000203, A001221, A008683, A062068.

%K nonn

%O 1,2

%A _Amarnath Murthy_, Jun 13 2001

%E More terms from _Jason Earls_, Jun 19 2001