Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jul 30 2017 23:07:06
%S 1,1,1,1,2,2,1,3,4,2,6,3,5,4,12,6,10,8,9,15,12,20,16,18,30,24,27,13,
%T 32,36,60,48,54,26,64,72,81,39,96,108,52,128,144,162,78,192,216,104,
%U 139,117,288,324,156,384,432,208,278,234,576,648,312,417,351,864,416,556
%N Number of times n-th distinct value is repeated in sequence b(k) = 1 + b(floor(k/2)) + b(floor(k/3)) with b(0) = 0, i.e., in A061984; also number of times n-th distinct row is repeated in square array T(n,k) = T(n-1,k) + T(n-1,floor(k/2)) + T(n-1,floor(k/3)) with T(0,0) = 1, i.e., in A061980.
%C For n > 0: a(n) = A003586(n+1) - A003586(n) and a(A084791(n)) = A084788(n).
%C Also number of times A160519(n+1) is repeated in A088468. - _Reinhard Zumkeller_, May 16 2009
%C In the 14th century Levi Ben Gerson proved that a(n) > 1 for all n > 6; see A003586, A235365, A235366, A236210. - _Jonathan Sondow_, Jan 20 2014
%H Reinhard Zumkeller, <a href="/A061987/b061987.txt">Table of n, a(n) for n = 0..100</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SmoothNumber.html">Smooth Number</a>
%F a(n) = A061986(A061985(n)).
%o (Haskell)
%o import Data.List (group)
%o a061987 n = a061987_list !! n
%o a061987_list = map length $ group a061984_list
%o -- _Reinhard Zumkeller_, Jan 11 2014
%K nonn
%O 0,5
%A _Henry Bottomley_, May 24 2001
%E More terms from _Reinhard Zumkeller_, Jun 03 2003