login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061793
a(n) = 25*n*(n + 1)/2 + 3.
2
3, 28, 78, 153, 253, 378, 528, 703, 903, 1128, 1378, 1653, 1953, 2278, 2628, 3003, 3403, 3828, 4278, 4753, 5253, 5778, 6328, 6903, 7503, 8128, 8778, 9453, 10153, 10878, 11628, 12403, 13203, 14028, 14878, 15753, 16653, 17578, 18528, 19503, 20503, 21528, 22578, 23653
OFFSET
0,1
COMMENTS
"If m is a triangular number, then so are 9*m+1, 25*m+3 and 49*m+6. (Euler, 1775)", see Burton in References. Note that A060544 is the same as 9*m+1 when m is triangular and that 9*(m*(m+1)/2)+1 is another formula for it.
9*m+1, 25*m+3 and 49*m+6 are special cases of the identity A000290(2*r + 1)*A000217(s) + A000217(r) = A000217((2*r + 1)*s + r). - Bruno Berselli, Mar 01 2018
Complementing the previous comment, with T(n) = A000217(n), 4*T(s)+1+s = T(2*s+1), 16*T(s)+3+2s = T(4*s+2) and 36*T(s)+6+3s = T(6*s+3) are special cases of the identity A000290(2*r)*T(s) + T(r) + r*s = T(2*r*s + r). - Charlie Marion, Mar 28 2018
REFERENCES
D. M. Burton, Elementary Number Theory, Allyn and Bacon, Inc. Boston, MA, 1976, p. 17.
FORMULA
a(n) = 25*A000217(n) + 3 = A123296(n) + 3.
From Elmo R. Oliveira, Oct 23 2024: (Start)
G.f.: (3 + 19*x + 3*x^2)/(1 - x)^3.
E.g.f.: (3 + 25*x + 25*x^2/2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)
MAPLE
[seq(25*(n*(n+1)/2)+3, n=0..40)]; # Muniru A Asiru, Mar 30 2018
MATHEMATICA
25*Accumulate[Range[0, 40]]+3 (* Harvey P. Dale, Aug 26 2013 *)
PROG
(PARI) v=[]; for(n=0, 100, v=concat(v, 25*(n*(n+1)/2)+3)); v
(PARI) { for (n=0, 1000, write("b061793.txt", n, " ", 25*n*(n + 1)/2 + 3) ) } \\ Harry J. Smith, Jul 28 2009
(GAP) List([0..40], n->25*(n*(n+1)/2)+3); # Muniru A Asiru, Mar 30 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jason Earls, Jun 22 2001
EXTENSIONS
Corrected by T. D. Noe, Oct 25 2006
STATUS
approved