login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061759 Numbers k such that k! is divisible by (k+1)^11. 1
59, 71, 79, 83, 89, 95, 99, 104, 107, 111, 119, 125, 127, 131, 134, 139, 143, 146, 149, 153, 155, 159, 161, 164, 167, 174, 175, 179, 181, 188, 191, 194, 195, 197, 199, 203, 207, 209, 215, 219, 220, 223, 224, 227, 230, 233, 237, 239, 241, 242, 244, 246, 249 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..2000

MAPLE

filter:= proc(n) local q, t, p, i, w, F;

  F:= ifactors(n+1)[2];

  for q in F do

    p:= q[1];

    t:= 0:

    for i from 1 do

      w:= floor(n/p^i);

      if w = 0 then return false fi;

      t:= t+w;

      if t >= 11*q[2] then break fi;

    od;

  od;

  true

end proc:

select(filter, [$1..1000]); # Robert Israel, Jul 01 2018

MATHEMATICA

Select[Range[250], IntegerQ[ #!/(# + 1)^11] &]

PROG

(PARI) { n=0; f=1; for (a=1, 3879, f*=a; if (f%(a + 1)^11 == 0, write("b061759.txt", n++, " ", a)) ) } \\ Harry J. Smith, Jul 27 2009

(MAGMA) [n: n in [1..250]| Factorial(n) mod (n+1)^11 eq 0]; // Vincenzo Librandi, Jul 02 2018

CROSSREFS

Sequence in context: A235225 A015979 A065208 * A061764 A316971 A162000

Adjacent sequences:  A061756 A061757 A061758 * A061760 A061761 A061762

KEYWORD

nonn

AUTHOR

Robert G. Wilson v, Jun 21 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 02:41 EST 2021. Contains 349590 sequences. (Running on oeis4.)