login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Roman numerals written using 1 for I, 2 for V, 3 for X, 4 for L, 5 for C, 6 for D, 7 for M.
19

%I #58 Aug 25 2022 05:03:45

%S 1,11,111,12,2,21,211,2111,13,3,31,311,3111,312,32,321,3211,32111,313,

%T 33,331,3311,33111,3312,332,3321,33211,332111,3313,333,3331,33311,

%U 333111,33312,3332,33321,333211,3332111,33313,34,341,3411,34111,3412

%N Roman numerals written using 1 for I, 2 for V, 3 for X, 4 for L, 5 for C, 6 for D, 7 for M.

%C From _Daniel Forgues_, Jan 16 2015: (Start)

%C The Romans did not have 0 as a number, which is why there was no year zero (1 B.C. is followed by 1 A.D.).

%C The initial "N" (nulla, meaning "nothing") was used as a zero symbol in a table of Roman numerals by Bede or his colleague around 725. (End)

%C 3999 (MMMCMXCIX) is the largest decimal number that has a well-defined Roman numeral representation. Therefore the sequence deliberately stops there to avoid the ambiguous representations of larger numbers. - _Jamie Robert Creasey_, May 01 2021

%H Reinhard Zumkeller, <a href="/A061493/b061493.txt">Table of n, a(n) for n = 1..3999</a>

%H Gerard Schildberger, <a href="/A006968/a006968.txt">The first 3999 numbers in Roman numerals</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RomanNumerals.html">Roman Numerals</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Roman_numerals">Roman numerals</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/0#Classical_antiquity">0 (number) in classical antiquity</a>

%F a(n)=i <=> A003587(i)=n, for i in {1,...,7}, i.e., A061493 is a left inverse of A003587 on {1,...,7}. - _M. F. Hasler_, Jan 12 2015

%e a(14) = 312 because 14 = XIV in Roman, and I,V,X are coded as 1,2,3 respectively.

%e a(66)= 4321, LXVI is 50+10+5+1= 66, a(44)=3412, XLIV is -10+50-1+5= 44

%t Array[FromDigits[Characters@ RomanNumeral[#] /. {"I" -> 1, "V" -> 2, "X" -> 3, "L" -> 4, "C" -> 5, "D" -> 6, "M" -> 7}] &, 44] (* _Michael De Vlieger_, May 01 2021 *)

%o (Haskell)

%o a061493 n = read $ r 1 [] n :: Integer where

%o r _ roms 0 = roms

%o r p roms z = case p of

%o 1 -> r 2 (d '1' '2' '3' m) z'

%o 2 -> r 3 (d '3' '4' '5' m ++ roms) z'

%o 3 -> r 4 (d '5' '6' '7' m ++ roms) z'

%o 4 -> replicate z '7' ++ roms

%o where (z',m) = divMod z 10

%o d i j k c =

%o [[],[i],[i,i],[i,i,i],[i,j],[j],[j,i],[j,i,i],[j,i,i,i],[i,k]] !! c

%o -- _Reinhard Zumkeller_, Apr 14 2013

%o (PARI) {A061493(n,s="",c=[1000,7,900,57,500,6,400,56,100,5,90,35,50,4,40,34,10,3,9,13,5,2,4,12,1,1])= forstep(i=1,#c,2,while(n>=c[i],n-=c[i];s=Str(s,c[i+1])));eval(s)} \\ _M. F. Hasler_, Jan 11 2015

%o (Python)

%o def f(s, k):

%o return s[:2] if k==4 else (s[1]*(k>=5)+s[0]*(k%5) if k<9 else s[0]+s[2])

%o def a(n):

%o m, c, x, i = n//1000, (n%1000)//100, (n%100)//10, n%10

%o return int("7"*m + f("567", c) + f("345", x) + f("123", i))

%o print([a(n) for n in range(1, 45)]) # _Michael S. Branicky_, Aug 24 2022

%Y Cf. A006968, A002963, A003587, A036787, A057226.

%Y Cf. A036746, A036786, A036788, A160676, A160677, A199921.

%K easy,nonn,base

%O 1,2

%A _Frank Ellermann_, Jun 12 2001

%E 0 removed again by _Georg Fischer_, Jan 20 2019