login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061248
Primes at which sum of digits strictly increases.
5
2, 3, 5, 7, 17, 19, 29, 59, 79, 89, 199, 389, 499, 599, 997, 1889, 1999, 2999, 4999, 6899, 8999, 29989, 39989, 49999, 59999, 79999, 98999, 199999, 389999, 598999, 599999, 799999, 989999, 2998999, 2999999, 4999999, 6999899, 8989999, 9899999
OFFSET
1,1
LINKS
EXAMPLE
a(6) = 19, sum of digits is 10; a(7) = 29, sum of digits is 11 and 11 > 10.
MATHEMATICA
t = {s = 2}; Do[If[(y = Total[IntegerDigits[x = Prime[n]]]) > s, AppendTo[t, x]; s = y], {n, 2, 750000}]; t (* Jayanta Basu, Aug 09 2013 *)
PROG
(Sage)
def A061248(nterms, b=10) :
res = []; n_list = [2]; n = 2; dsum = 0
while len(res) < nterms :
while not (sum(n_list) >= dsum and n.is_prime()) :
i = next((j for j in range(len(n_list)) if n_list[j] < b-1), len(n_list))
if i == len(n_list) : n_list.append(0)
n_list[i] += 1
r = dsum - sum(n_list[i:])
for j in range(i) :
n_list[j] = min(r, b-1)
r -= n_list[j]
n = sum(n_list[i]*b^i for i in range(len(n_list)))
res.append(n); dsum = sum(n_list)+1
return res
# Eric M. Schmidt, Oct 08 2013
CROSSREFS
For the actual digit sums see A062132.
Sequence in context: A127042 A069802 A067954 * A059498 A247147 A158085
KEYWORD
nonn,base
AUTHOR
Amarnath Murthy, Apr 23 2001
EXTENSIONS
More terms from Patrick De Geest, Jun 05 2001
STATUS
approved