login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of squared factorials: (0!)^2 + (1!)^2 + (2!)^2 + (3!)^2 +...+ (n!)^2.
9

%I #37 Dec 15 2017 17:35:01

%S 1,2,6,42,618,15018,533418,25935018,1651637418,133333531818,

%T 13301522971818,1606652445211818,231049185247771818,

%U 39006837228880411818,7639061293780877851818,1717651314017980301851818

%N Sum of squared factorials: (0!)^2 + (1!)^2 + (2!)^2 + (3!)^2 +...+ (n!)^2.

%C There is a Kurepa-like conjecture (see A049782) for this sequence: for primes p>3, p does not divide a(p-1). However, the conjecture fails for p=20879. - _T. D. Noe_, Dec 08 2004

%H Seiichi Manyama, <a href="/A061062/b061062.txt">Table of n, a(n) for n = 0..253</a> (terms 0..100 from Harry J. Smith)

%F a(n) = sum(k=0...n, (n-k)!^2 ). - _Ross La Haye_, Sep 21 2004

%F Recurrence: a(0) = 1, a(1) = 2, a(n) = (n^2+1)*a(n-1) - n^2*a(n-2). - _Vladimir Reshetnikov_, Oct 28 2015

%e a(2) = 0!*0! + 1!*1! + 2!*2! = 6.

%p A061062:=n->sum((k!)^2, k=0..n): seq(A061062(n), n=0..15); # _Zerinvary Lajos_, Jan 22 2008

%t s=0; Table[s=s+(n!)^2, {n, 0, 20}]

%t Accumulate[(Range[0,20]!)^2] (* _Harvey P. Dale_, Apr 19 2015 *)

%o (PARI) { a=0; for (n=0, 100, write("b061062.txt", n, " ", a+=(n!)^2) ) } \\ _Harry J. Smith_, Jul 17 2009

%Y Cf. A001044, A100288 (primes of the form (1!)^2 + (2!)^2 + (3!)^2 +...+ (k!)^2), A104344 (if sum starts at k=1), A049782.

%K nonn

%O 0,2

%A _Jason Earls_, May 27 2001

%E More terms from _T. D. Noe_, Dec 08 2004