login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Odd values of the sum-of-divisors function sigma (A000203) (without repetitions).
4

%I #18 Dec 26 2024 03:53:15

%S 1,3,7,13,15,31,39,57,63,91,93,121,127,133,171,183,195,217,255,307,

%T 363,381,399,403,465,511,549,553,741,781,819,847,855,871,921,931,961,

%U 993,1023,1093,1143,1209,1281,1407,1651,1659,1723,1729,1767,1815,1893,1953

%N Odd values of the sum-of-divisors function sigma (A000203) (without repetitions).

%C That is, the odd values produced by the sigma function.

%C Odd terms of A002191. - _Michel Marcus_, Jun 10 2014

%H Giovanni Resta, <a href="/A060657/b060657.txt">Table of n, a(n) for n = 1..10000</a>

%H Max Alekseyev, <a href="https://oeis.org/wiki/User:Max_Alekseyev/gpscripts">PARI/GP Scripts for Miscellaneous Math Problems</a> (invphi.gp).

%e a(7) = 39 because sigma(18) = 1+2+3+6+9+18 = 39, an odd number.

%t nn = 2000; Union[Select[DivisorSigma[1, Range[nn]], OddQ[#] && # <= nn &]] (* _Harvey P. Dale_, Mar 12 2011 *)

%o (PARI) is(k) = k % 2 && invsigmaNum(k) > 0; \\ _Amiram Eldar_, Dec 26 2024, using _Max Alekseyev_'s invphi.gp

%Y Cf. A000203, A002191, A007369.

%K nonn

%O 1,2

%A _Robert G. Wilson v_, Apr 18 2001

%E Name edited by _Giovanni Resta_, Jan 08 2020