login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060470
Smallest positive a(n) such that number of solutions to a(n)=a(j)+a(k) j<k<n is two or less.
7
1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 19, 24, 26, 28, 33, 35, 37, 42, 44, 46, 51, 53, 55, 60, 62, 64, 69, 71, 73, 78, 80, 82, 87, 89, 91, 96, 98, 100, 105, 107, 109, 114, 116, 118, 123, 125, 127, 132, 134, 136, 141, 143, 145, 150, 152, 154, 159, 161, 163, 168, 170
OFFSET
1,2
COMMENTS
Numbers {1,6,8} mod 9 plus {2,3,4,5,12}.
FORMULA
From Chai Wah Wu, Feb 21 2018: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 13.
G.f.: x*(2*x^12 + x^9 + x^8 + x^7 + x^6 + x^2 + x + 1)/(x^4 - x^3 - x + 1). (End)
a(n) = 2*n + 3*floor(n/3 + 2/3) - 17 for n>9. - Bruno Berselli, Feb 22 2018
EXAMPLE
12 is in the sequence since it is 4+8 and 2+10 but no other sum of two distinct terms.
MATHEMATICA
f[s_List, j_Integer] := Block[{cnt, k = s[[-1]] + 1, ss = Plus @@@ Subsets[s, {j}]}, While[ cnt = Count[ss, k]; cnt == 0 || cnt > 2, k++]; Append[s, k]]; Nest[f[#, 2] &, {1, 2}, 70] (* Robert G. Wilson v, Jul 05 2014 *)
CoefficientList[Series[(2 x^12 + x^9 + x^8 + x^7 + x^6 + x^2 + x + 1) / (x^4 - x^3 - x + 1), {x, 0, 100}], x] (* Vincenzo Librandi, Feb 22 2018 *)
PROG
(Magma) I:=[1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 19, 24]; [n le 13 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, Feb 22 2018
(Magma) [n le 9 select Floor(n^2/12+n/2+3/4) else 2*n+3*Floor(n/3+2/3)-17: n in [1..65]]; // Bruno Berselli, Feb 22 2018
CROSSREFS
Cf. A003044, A033627, A060469, A060471, A060472. Virtually identical to A003663.
Sequence in context: A018478 A018350 A033058 * A003044 A279077 A018541
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Mar 15 2001
STATUS
approved