OFFSET
1,1
COMMENTS
A prime p has 10 as a primitive root iff the length of the period of the decimal expansion of 1/p is p-1.
a(21) = 9774718453 and a(23) = 9525468065. - Amiram Eldar, Oct 03 2021
MATHEMATICA
test[p_] := MultiplicativeOrder[10, p]===p-1; For[n=1, n<100, n++, a[n]=0]; v=4; While[True, For[n=1, test[Prime[v+n]], n++, Null]; If[a[n]==0, a[n]=v; Print["a(", n, ") = ", v]]; For[v+=n+1, !test[Prime[v]], v++, Null]]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jeff Burch, Mar 23 2001
EXTENSIONS
Edited by Dean Hickerson, Jun 17 2002
a(13)-a(19) from Amiram Eldar, Oct 03 2021
STATUS
approved