login
A046995
Number of Greek-key tours on a 4 X n board; i.e., self-avoiding walks on 4 X n grid starting in top left corner.
9
1, 4, 17, 52, 160, 469, 1337, 3750, 10347, 28249, 76382, 204996, 546651, 1449952, 3828232, 10067585, 26384939, 68941126, 179658343, 467084601, 1211812016, 3138075544, 8112667259, 20941558268, 53983767498, 138989629481, 357450757247, 918350963486, 2357213935865, 6045360575469
OFFSET
1,2
REFERENCES
Posting by Thomas Womack (mert0236(AT)sable.ox.ac.uk) to sci.math newsgroup, Apr 21 1999.
LINKS
Jay Pantone, Alexander R. Klotz, and Everett Sullivan, Exactly-solvable self-trapping lattice walks. II. Lattices of arbitrary height, arXiv:2407.18205 [math.CO], 2024. See pp. 26, 30.
FORMULA
a(n) = 3a(n-1)+3a(n-2)-9a(n-3)-6a(n-4)+5a(n-5)+a(n-6)-3a(n-7)+a(n-8) for n>=10. [conjectured by Dean Hickerson, Apr 05 2003; proved by Jay Pantone, Klotz, and Sullivan, Aug 01 2024]
G.f.: x*(-(x-1)*(x^7-x^6-2*x^5+3*x^4-2*x^3-4*x^2-2*x-1))/((x^4-2*x^3+2*x^2+2*x-1)*(x^4-x^3-3*x^2-x+1)). [conjectured by Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009; proved by Jay Pantone, Klotz, and Sullivan, Aug 01 2024]
CROSSREFS
Row 4 of A378938.
Cf. A046994.
Sequence in context: A047668 A208658 A092091 * A001585 A060262 A157492
KEYWORD
nonn,easy,walk
AUTHOR
Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr)
EXTENSIONS
More terms from Hugo van der Sanden, Apr 02 2003
a(26) onwards from Andrew Howroyd, Dec 21 2024
STATUS
approved