OFFSET
1,2
REFERENCES
Posting by Thomas Womack (mert0236(AT)sable.ox.ac.uk) to sci.math newsgroup, Apr 21 1999.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..500
Jay Pantone, Alexander R. Klotz, and Everett Sullivan, Exactly-solvable self-trapping lattice walks. II. Lattices of arbitrary height, arXiv:2407.18205 [math.CO], 2024. See pp. 26, 30.
Index entries for linear recurrences with constant coefficients, signature (3,3,-9,-6,5,1,-3,1).
FORMULA
a(n) = 3a(n-1)+3a(n-2)-9a(n-3)-6a(n-4)+5a(n-5)+a(n-6)-3a(n-7)+a(n-8) for n>=10. [conjectured by Dean Hickerson, Apr 05 2003; proved by Jay Pantone, Klotz, and Sullivan, Aug 01 2024]
G.f.: x*(-(x-1)*(x^7-x^6-2*x^5+3*x^4-2*x^3-4*x^2-2*x-1))/((x^4-2*x^3+2*x^2+2*x-1)*(x^4-x^3-3*x^2-x+1)). [conjectured by Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009; proved by Jay Pantone, Klotz, and Sullivan, Aug 01 2024]
CROSSREFS
KEYWORD
nonn,easy,walk
AUTHOR
Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr)
EXTENSIONS
More terms from Hugo van der Sanden, Apr 02 2003
a(26) onwards from Andrew Howroyd, Dec 21 2024
STATUS
approved