login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of orbits of length n under the full 17-shift (whose periodic points are counted by A001026).
2

%I #21 Sep 13 2024 08:01:01

%S 17,136,1632,20808,283968,4022064,58619808,871959240,13176430176,

%T 201599248032,3115626937056,48551851084080,761890617915840,

%U 12026987582075856,190828203433892736,3041324491793194440,48661191875666868480,781282469552728498992,12582759772902701307744

%N Number of orbits of length n under the full 17-shift (whose periodic points are counted by A001026).

%C Number of monic irreducible polynomials of degree n over GF(17). - _Andrew Howroyd_, Dec 10 2017

%H G. C. Greubel, <a href="/A060220/b060220.txt">Table of n, a(n) for n = 1..810</a>

%H Y. Puri and T. Ward, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/WARD/short.html">Arithmetic and growth of periodic orbits</a>, J. Integer Seqs., Vol. 4 (2001), #01.2.1.

%H Yash Puri and Thomas Ward, <a href="http://www.fq.math.ca/Scanned/39-5/puri.pdf">A dynamical property unique to the Lucas sequence</a>, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.

%H T. Ward, <a href="http://www.mth.uea.ac.uk/~h720/research/files/integersequences.html">Exactly realizable sequences</a>

%F a(n) = (1/n)* Sum_{d|n} mu(d)*A001026(n/d).

%F G.f.: Sum_{k>=1} mu(k)*log(1/(1 - 17*x^k))/k. - _Ilya Gutkovskiy_, May 20 2019

%e a(2)=136 since there are 289 points of period 2 in the full 17-shift and 17 fixed points, so there must be (289-17)/2 = 136 orbits of length 2.

%t A060220[n_]:= DivisorSum[n, (17)^(n/#)*MoebiusMu[#] &]/n;

%t Table[A060220[n], {n,40}] (* _G. C. Greubel_, Sep 13 2024 *)

%o (PARI) a001024(n) = 17^n;

%o a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001024(n/d)); \\ _Michel Marcus_, Sep 11 2017

%o (Magma)

%o A060220:= func< n | (1/n)*(&+[MoebiusMu(d)*(17)^Floor(n/d): d in Divisors(n)]) >;

%o [A060220(n): n in [1..40]]; // _G. C. Greubel_, Sep 13 2024

%o (SageMath)

%o def A060220(n): return (1/n)*sum(moebius(k)*(17)^(n/k) for k in (1..n) if (k).divides(n))

%o [A060220(n) for n in range(1,41)] # _G. C. Greubel_, Sep 13 2024

%Y Column 17 of A074650.

%Y Cf. A001026, A008683.

%K easy,nonn

%O 1,1

%A _Thomas Ward_, Mar 21 2001

%E More terms from _Michel Marcus_, Sep 11 2017