login
Sum of distinct orders of degree-n permutations.
4

%I #24 Aug 17 2024 03:24:52

%S 1,1,3,6,10,21,21,50,73,116,167,248,385,496,728,959,1548,1899,2835,

%T 3609,5042,6403,8336,12187,15522,21358,26090,35298,44147,62512,76289,

%U 101403,123883,156880,200086,254175,335380,413184,505860,615258,810767,980747,1293953

%N Sum of distinct orders of degree-n permutations.

%H Alois P. Heinz, <a href="/A060179/b060179.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f.: Prod(p prime, 1 + Sum(k >= 1, p^k*x^(p^k))) / (1-x). - _Vladeta Jovovic_, Sep 18 2002

%e Set of orders of all degree 7 permutations is {1,2,3,4,5,6,7,10,12} so a(7)=1+2+3+4+5+6+7+10+12=50.

%p b:= proc(n, i) option remember; (p->`if`(i*n=0, 1,

%p add(b(n-p^j, i-1)*p^j, j=1..ilog[p](n))+

%p b(n, i-1)))(`if`(i=0, 0, ithprime(i)))

%p end:

%p a:= n-> b(n, numtheory[pi](n)):

%p seq(a(n), n=0..50); # _Alois P. Heinz_, Jul 12 2017

%t b[n_, i_] := b[n, i] = Function [p, If[i*n == 0, 1, Sum[b[n-p^j, i-1]*p^j, {j, 1, Floor@Log[p, n]}] + b[n, i-1]]][If[i == 0, 0, Prime[i]]];

%t a[n_] := b[n, PrimePi[n]];

%t a /@ Range[0, 50] (* _Jean-François Alcover_, Mar 14 2021, after _Alois P. Heinz_ *)

%Y Cf. A060014, A060015.

%Y Cf. A009490.

%Y Row sums of A256553.

%K easy,nonn

%O 0,3

%A _Vladeta Jovovic_, Mar 19 2001

%E More terms from _David Wasserman_, May 29 2002

%E a(0)=1 prepended by _Alois P. Heinz_, Apr 01 2015