login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(n/(1+tau)), or equivalently floor(n/(tau)^2), where tau is the golden ratio (A001622).
15

%I #63 Jan 05 2025 19:51:36

%S 0,0,0,1,1,1,2,2,3,3,3,4,4,4,5,5,6,6,6,7,7,8,8,8,9,9,9,10,10,11,11,11,

%T 12,12,12,13,13,14,14,14,15,15,16,16,16,17,17,17,18,18,19,19,19,20,20,

%U 21,21,21,22,22,22,23,23,24,24,24,25,25,25,26,26,27,27,27,28,28,29,29

%N a(n) = floor(n/(1+tau)), or equivalently floor(n/(tau)^2), where tau is the golden ratio (A001622).

%H Harry J. Smith, <a href="/A060144/b060144.txt">Table of n, a(n) for n = 0..1000</a>

%H Martin Griffiths, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/56-1/GriffithsmgFibWordSeq121517.pdf">A formula for an infinite family of Fibonacci-word sequences</a>, Fib. Q., 56 (2018), 75-80.

%H D. R. Hofstadter, <a href="/A006336/a006336_1.pdf">Eta-Lore</a> [With permission]

%H D. R. Hofstadter, <a href="/A006336/a006336_2.pdf">Pi-Mu Sequences</a> [With permission]

%H D. R. Hofstadter and N. J. A. Sloane, <a href="/A006336/a006336.pdf">Correspondence, 1977 and 1991</a> (On page 4 of DRH letter, v[n] = A006336, a[n] = A060144[n+1]). - _N. J. A. Sloane_, Oct 25 2014

%F For n>0, a(n)=n reduced modulo A005206(n). - _Benoit Cloitre_, Jan 01 2003

%F Let n' = n-1. Above formula is better as a(n') = n'-A005206(n'). Also a(n') = A005206(A005206(n'-1)). Also a(n'+1) = n'-a(n')-a(n'-a(n')), with a(0) = 0. - _Frank Ruskey_, Dec 09 2011

%F a(n+1) = n - A005206(n). - _Reinhard Zumkeller_, Apr 07 2012

%F a(n) = floor(n*A132338). - _R. J. Mathar_, Jul 29 2021

%p A060144 := proc(n)

%p (3+sqrt(5))/2 ;

%p floor(n/%) ;

%p end proc:

%p seq(A060144(n),n=0..100) ; # _R. J. Mathar_, Jul 29 2021

%t Table[Floor[n/GoldenRatio^2], {n, 0, 100}] (* _T. D. Noe_, Dec 10 2011 *)

%o (PARI)

%o { default(realprecision, 10); f=2/(sqrt(5) + 3); for (n=0, 1000, write("b060144.txt", n, " ", floor(n*f)); ) } \\ _Harry J. Smith_, Jul 02 2009

%o (Haskell)

%o a060144 n = a060144_list !! n

%o a060144_list = 0 : 0 : scanl1 (+) a003849_list

%o -- _Reinhard Zumkeller_, Apr 07 2012

%o (Python)

%o from math import isqrt

%o def A060144(n): return (n<<1)-1-(n+isqrt(5*n**2)>>1) if n else 0 # _Chai Wah Wu_, Aug 09 2022

%Y Cf. A001622, A005206, A006336.

%K nonn,changed

%O 0,7

%A _Clark Kimberling_, Mar 05 2001